These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 30797005)
41. Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants. Rasheed T; Bilal M; Li C; Nabeel F; Khalid M; Iqbal HMN J Photochem Photobiol B; 2018 Apr; 181():44-52. PubMed ID: 29499463 [TBL] [Abstract][Full Text] [Related]
42. Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. Khan MSJ; Kamal T; Ali F; Asiri AM; Khan SB Int J Biol Macromol; 2019 Jul; 132():772-783. PubMed ID: 30928377 [TBL] [Abstract][Full Text] [Related]
43. In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: a three-way synergistic heterostructure with enhanced photocatalytic activity. Zhang P; Shao C; Li X; Zhang M; Zhang X; Sun Y; Liu Y J Hazard Mater; 2012 Oct; 237-238():331-8. PubMed ID: 22975259 [TBL] [Abstract][Full Text] [Related]
44. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. Atchudan R; Edison TNJI; Perumal S; Karthikeyan D; Lee YR J Photochem Photobiol B; 2016 Sep; 162():500-510. PubMed ID: 27459420 [TBL] [Abstract][Full Text] [Related]
45. Anchoring of silver nanoparticles on graphitic carbon nitride sheets for the synergistic catalytic reduction of 4-nitrophenol. Wang X; Tan F; Wang W; Qiao X; Qiu X; Chen J Chemosphere; 2017 Apr; 172():147-154. PubMed ID: 28068566 [TBL] [Abstract][Full Text] [Related]
46. Facile synthesis of graphene oxide-silver nanocomposite for decontamination of water from multiple pollutants by adsorption, catalysis and antibacterial activity. Naeem H; Ajmal M; Qureshi RB; Muntha ST; Farooq M; Siddiq M J Environ Manage; 2019 Jan; 230():199-211. PubMed ID: 30286349 [TBL] [Abstract][Full Text] [Related]
47. Ag nanoparticles anchored on NiO octahedrons (Ag/NiO composite): An efficient catalyst for reduction of nitro substituted phenols and colouring dyes. Bhatia P; Nath M Chemosphere; 2022 Mar; 290():133188. PubMed ID: 34906527 [TBL] [Abstract][Full Text] [Related]
48. Electrospun metal-organic frameworks with polyacrylonitrile as precursors to hierarchical porous carbon and composite nanofibers for adsorption and catalysis. Wang J; Cai C; Zhang Z; Li C; Liu R Chemosphere; 2020 Jan; 239():124833. PubMed ID: 31526990 [TBL] [Abstract][Full Text] [Related]
49. Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Ali F; Khan SB; Kamal T; Anwar Y; Alamry KA; Asiri AM Carbohydr Polym; 2017 Oct; 173():676-689. PubMed ID: 28732913 [TBL] [Abstract][Full Text] [Related]
50. Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material. Lamba R; Umar A; Mehta SK; Kansal SK Talanta; 2015 Jan; 131():490-8. PubMed ID: 25281131 [TBL] [Abstract][Full Text] [Related]
51. Metal nanoparticle-embedded bacterial cellulose aerogels via swelling-induced adsorption for nitrophenol reduction. Song L; Shu L; Wang Y; Zhang XF; Wang Z; Feng Y; Yao J Int J Biol Macromol; 2020 Jan; 143():922-927. PubMed ID: 31739039 [TBL] [Abstract][Full Text] [Related]
52. Electrospun cellulose acetate supported Ag@AgCl composites with facet-dependent photocatalytic properties on degradation of organic dyes under visible-light irradiation. Zhou Z; Peng X; Zhong L; Wu L; Cao X; Sun RC Carbohydr Polym; 2016 Jan; 136():322-8. PubMed ID: 26572362 [TBL] [Abstract][Full Text] [Related]
53. Homogeneous synthesis of Ag nanoparticles-doped water-soluble cellulose acetate for versatile applications. Cao J; Sun X; Zhang X; Lu C Int J Biol Macromol; 2016 Nov; 92():167-173. PubMed ID: 27373429 [TBL] [Abstract][Full Text] [Related]
54. Synthesis of [60]fullerene-ZnO nanocomposite under electric furnace and photocatalytic degradation of organic dyes. Hong SK; Lee JH; Ko WB J Nanosci Nanotechnol; 2011 Jul; 11(7):6049-56. PubMed ID: 22121656 [TBL] [Abstract][Full Text] [Related]
55. Functional cellulose-based nanofibers with catalytic activity: effect of Ag content and Ag phase. Jang KH; Kang YO; Park WH Int J Biol Macromol; 2014 Jun; 67():394-400. PubMed ID: 24705168 [TBL] [Abstract][Full Text] [Related]
56. Synthesis, characterization and application of ZnO-Ag as a nanophotocatalyst for organic compounds degradation, mechanism and economic study. Mohammadzadeh S; Olya ME; Arabi AM; Shariati A; Khosravi Nikou MR J Environ Sci (China); 2015 Sep; 35():194-207. PubMed ID: 26354709 [TBL] [Abstract][Full Text] [Related]
57. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity. Yan W; Chen C; Wang L; Zhang D; Li AJ; Yao Z; Shi LY Carbohydr Polym; 2016 Apr; 140():66-73. PubMed ID: 26876829 [TBL] [Abstract][Full Text] [Related]
58. Investigation of operation parameters on the removal efficiency of methyl orange pollutant by cellulose/zinc oxide hybrid aerogel. Hasanpour M; Motahari S; Jing D; Hatami M Chemosphere; 2021 Dec; 284():131320. PubMed ID: 34198060 [TBL] [Abstract][Full Text] [Related]
59. Synthesis of Ag-ZnO nanoparticles for enhanced photocatalytic degradation of acid red 88 in aqueous environment. Sathish Kumar PS; Manivel A; Anandan S Water Sci Technol; 2009; 59(7):1423-30. PubMed ID: 19381009 [TBL] [Abstract][Full Text] [Related]
60. Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. Xu C; Cao L; Su G; Liu W; Liu H; Yu Y; Qu X J Hazard Mater; 2010 Apr; 176(1-3):807-13. PubMed ID: 20007008 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]