These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 30797328)
1. (-)-Epigallocatechin-3-gallate-mediated formation of myofibrillar protein emulsion gels under malondialdehyde-induced oxidative stress. Lv Y; Chen L; Wu H; Xu X; Zhou G; Zhu B; Feng X Food Chem; 2019 Jul; 285():139-146. PubMed ID: 30797328 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of Epigallocatechin-3-gallate/Protein Interaction by Methyl-β-cyclodextrin in Myofibrillar Protein Emulsion Gels under Oxidative Stress. Zhang Y; Lv Y; Chen L; Wu H; Zhang Y; Suo Z; Wang S; Liang Y; Xu X; Zhou G; Feng X J Agric Food Chem; 2018 Aug; 66(30):8094-8103. PubMed ID: 29976058 [TBL] [Abstract][Full Text] [Related]
3. Controlled formation of emulsion gels stabilized by salted myofibrillar protein under malondialdehyde (MDA)-induced oxidative stress. Zhou F; Sun W; Zhao M J Agric Food Chem; 2015 Apr; 63(14):3766-77. PubMed ID: 25749308 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of interaction between epigallocatechin-3-gallate and myofibrillar protein by cyclodextrin derivatives improves gel quality under oxidative stress. Zhang Y; Chen L; Lv Y; Wang S; Suo Z; Cheng X; Xu X; Zhou G; Li Z; Feng X Food Res Int; 2018 Jun; 108():8-17. PubMed ID: 29735104 [TBL] [Abstract][Full Text] [Related]
5. The gelation properties of myofibrillar proteins prepared with malondialdehyde and (-)-epigallocatechin-3-gallate. Lv Y; Feng X; Wang Y; Guan Q; Qian S; Xu X; Zhou G; Ullah N; Chen L Food Chem; 2021 Mar; 340():127817. PubMed ID: 32889199 [TBL] [Abstract][Full Text] [Related]
6. Emulsifying Properties of Oxidatively Stressed Myofibrillar Protein Emulsion Gels Prepared with (-)-Epigallocatechin-3-gallate and NaCl. Feng X; Chen L; Lei N; Wang S; Xu X; Zhou G; Li Z J Agric Food Chem; 2017 Apr; 65(13):2816-2826. PubMed ID: 28267324 [TBL] [Abstract][Full Text] [Related]
7. Dose-dependent effects of rosmarinic acid on formation of oxidatively stressed myofibrillar protein emulsion gel at different NaCl concentrations. Wang S; Zhang Y; Chen L; Xu X; Zhou G; Li Z; Feng X Food Chem; 2018 Mar; 243():50-57. PubMed ID: 29146369 [TBL] [Abstract][Full Text] [Related]
8. Gelation properties of myofibrillar protein under malondialdehyde-induced oxidative stress. Wang L; Zhang M; Fang Z; Bhandari B J Sci Food Agric; 2017 Jan; 97(1):50-57. PubMed ID: 26916602 [TBL] [Abstract][Full Text] [Related]
9. Effects of (-)-epigallocatechin-3-gallate incorporation on the physicochemical and oxidative stability of myofibrillar protein-soybean oil emulsions. Cao Y; Ai N; True AD; Xiong YL Food Chem; 2018 Apr; 245():439-445. PubMed ID: 29287393 [TBL] [Abstract][Full Text] [Related]
10. A novel EGCG-Histidine complex improves gelling and physicochemical properties of porcine myofibrillar proteins: Insight into underlying mechanisms. Guo X; Wang R; Han B; Shao W; Chen L; Feng X Food Chem; 2024 Aug; 448():139070. PubMed ID: 38555690 [TBL] [Abstract][Full Text] [Related]
11. The dose-dependent effects of polyphenols and malondialdehyde on the emulsifying and gel properties of myofibrillar protein-mulberry polyphenol complex. Cheng J; Tang D; Yang H; Wang X; Zhu M; Liu X Food Chem; 2021 Oct; 360():130005. PubMed ID: 33984565 [TBL] [Abstract][Full Text] [Related]
12. Influence of sodium tripolyphosphate coupled with (-)-epigallocatechin on the in vitro digestibility and emulsion gel properties of myofibrillar protein under oxidative stress. Chen J; Zhang K; Ren Y; Hu F; Yan Y; Qu J Food Funct; 2020 Jul; 11(7):6407-6421. PubMed ID: 32613953 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation modification of myofibrillar proteins by sodium pyrophosphate affects emulsion gel formation and oxidative stability under different pH conditions. Chen J; Ren Y; Zhang K; Qu J; Hu F; Yan Y Food Funct; 2019 Oct; 10(10):6568-6581. PubMed ID: 31552989 [TBL] [Abstract][Full Text] [Related]
15. Dual role (promotion and inhibition) of transglutaminase in mediating myofibrillar protein gelation under malondialdehyde-induced oxidative stress. Lv Y; Feng X; Yang R; Qian S; Liu Y; Xu X; Zhou G; Ullah N; Zhu B; Chen L Food Chem; 2021 Aug; 353():129453. PubMed ID: 33765599 [TBL] [Abstract][Full Text] [Related]
16. Rheological and microstructural properties of porcine myofibrillar protein-lipid emulsion composite gels. Wu M; Xiong YL; Chen J; Tang X; Zhou G J Food Sci; 2009; 74(4):E207-17. PubMed ID: 19490326 [TBL] [Abstract][Full Text] [Related]
17. Effect of typical starch on the rheological properties and NMR characterization of myofibrillar protein gel. Wu M; Wang J; Hu J; Li Z; Liu R; Liu Y; Cao Y; Ge Q; Yu H J Sci Food Agric; 2020 Jan; 100(1):258-267. PubMed ID: 31512250 [TBL] [Abstract][Full Text] [Related]
18. Changes in the structural and gel properties of pork myofibrillar protein induced by catechin modification. Jia N; Wang L; Shao J; Liu D; Kong B Meat Sci; 2017 May; 127():45-50. PubMed ID: 28119227 [TBL] [Abstract][Full Text] [Related]
19. Suppression mechanism of L-lysine on the Epigallocatechin-3-gallate-induced loss of myofibrillar protein gelling potential. Wang M; Kang J; Chen L; He G; Liu Y; Fan X; Lv X; Xu X; Zhou G; Feng X Food Res Int; 2023 Jul; 169():112928. PubMed ID: 37254354 [TBL] [Abstract][Full Text] [Related]
20. Effects of oxidative modification on gel properties of isolated porcine myofibrillar protein by peroxyl radicals. Zhou F; Zhao M; Zhao H; Sun W; Cui C Meat Sci; 2014 Apr; 96(4):1432-9. PubMed ID: 24406430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]