These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 30797482)
1. Hydrogen-bond-based protein engineering for the acidic adaptation of Bacillus acidopullulyticus pullulanase. Chen A; Xu T; Ge Y; Wang L; Tang W; Li S Enzyme Microb Technol; 2019 May; 124():79-83. PubMed ID: 30797482 [TBL] [Abstract][Full Text] [Related]
2. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods. Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347 [TBL] [Abstract][Full Text] [Related]
3. Active Hydrogen Bond Network (AHBN) and Applications for Improvement of Thermal Stability and pH-Sensitivity of Pullulanase from Bacillus naganoensis. Wang QY; Xie NZ; Du QS; Qin Y; Li JX; Meng JZ; Huang RB PLoS One; 2017; 12(1):e0169080. PubMed ID: 28103251 [TBL] [Abstract][Full Text] [Related]
4. Improvement of the Activity and Stability of Starch-Debranching Pullulanase from Bacillus naganoensis via Tailoring of the Active Sites Lining the Catalytic Pocket. Wang X; Nie Y; Xu Y J Agric Food Chem; 2018 Dec; 66(50):13236-13242. PubMed ID: 30499289 [TBL] [Abstract][Full Text] [Related]
5. A Hyperthermostable Type II Pullulanase from a Deep-Sea Microorganism Pang B; Zhou L; Cui W; Liu Z; Zhou S; Xu J; Zhou Z J Agric Food Chem; 2019 Aug; 67(34):9611-9617. PubMed ID: 31385500 [TBL] [Abstract][Full Text] [Related]
6. Disorder prediction-based construct optimization improves activity and catalytic efficiency of Bacillus naganoensis pullulanase. Wang X; Nie Y; Mu X; Xu Y; Xiao R Sci Rep; 2016 Apr; 6():24574. PubMed ID: 27091115 [TBL] [Abstract][Full Text] [Related]
7. A pH-stable, detergent and chelator resistant type I pullulanase from Bacillus pseudofirmus 703 with high catalytic efficiency. Lu Z; Hu X; Shen P; Wang Q; Zhou Y; Zhang G; Ma Y Int J Biol Macromol; 2018 Apr; 109():1302-1310. PubMed ID: 29175162 [TBL] [Abstract][Full Text] [Related]
8. N-Terminal Domain Truncation and Domain Insertion-Based Engineering of a Novel Thermostable Type I Pullulanase from Geobacillus thermocatenulatus. Li L; Dong F; Lin L; He D; Wei W; Wei D J Agric Food Chem; 2018 Oct; 66(41):10788-10798. PubMed ID: 30222339 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
10. Evolutionary coupling saturation mutagenesis: Coevolution-guided identification of distant sites influencing Bacillus naganoensis pullulanase activity. Wang X; Jing X; Deng Y; Nie Y; Xu F; Xu Y; Zhao YL; Hunt JF; Montelione GT; Szyperski T FEBS Lett; 2020 Mar; 594(5):799-812. PubMed ID: 31665817 [TBL] [Abstract][Full Text] [Related]
11. Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms: a review. Akassou M; Groleau D Crit Rev Biotechnol; 2019 May; 39(3):337-350. PubMed ID: 30700157 [TBL] [Abstract][Full Text] [Related]
12. Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability. Li SF; Xu JY; Bao YJ; Zheng HC; Song H J Biotechnol; 2015 Sep; 210():8-14. PubMed ID: 26116135 [TBL] [Abstract][Full Text] [Related]
13. Pullulanase with high temperature and low pH optima improved starch saccharification efficiency. Niu D; Cong H; Zhang Y; Mchunu NP; Wang ZX Sci Rep; 2022 Dec; 12(1):21942. PubMed ID: 36536070 [TBL] [Abstract][Full Text] [Related]
14. Functional characterization of tryptophan437 at subsite +2 in pullulanase from Bacillus subtilis str. 168. Li X; Bai Y; Ji H; Wang J; Cui Y; Jin Z Int J Biol Macromol; 2019 Jul; 133():920-928. PubMed ID: 31028806 [TBL] [Abstract][Full Text] [Related]
15. Recombinant expression and characterization of a novel cold-adapted type I pullulanase for efficient amylopectin hydrolysis. Zhang SY; Guo ZW; Wu XL; Ou XY; Zong MH; Lou WY J Biotechnol; 2020 Apr; 313():39-47. PubMed ID: 32198062 [TBL] [Abstract][Full Text] [Related]
16. Gene cloning and enzymatic characterization of alkali-tolerant type I pullulanase from Exiguobacterium acetylicum. Qiao Y; Peng Q; Yan J; Wang H; Ding H; Shi B Lett Appl Microbiol; 2015 Jan; 60(1):52-9. PubMed ID: 25273816 [TBL] [Abstract][Full Text] [Related]
17. An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus. Møller MS; Goh YJ; Rasmussen KB; Cypryk W; Celebioglu HU; Klaenhammer TR; Svensson B; Abou Hachem M Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28411221 [TBL] [Abstract][Full Text] [Related]
18. Improving the thermostability and catalytic efficiency of Bacillus deramificans pullulanase by site-directed mutagenesis. Duan X; Chen J; Wu J Appl Environ Microbiol; 2013 Jul; 79(13):4072-7. PubMed ID: 23624477 [TBL] [Abstract][Full Text] [Related]
19. A novel cold-adapted type I pullulanase of Paenibacillus polymyxa Nws-pp2: in vivo functional expression and biochemical characterization of glucans hydrolyzates analysis. Wei W; Ma J; Chen SQ; Cai XH; Wei DZ BMC Biotechnol; 2015 Oct; 15():96. PubMed ID: 26481143 [TBL] [Abstract][Full Text] [Related]
20. Engineering better catalytic activity and acidic adaptation into Kluyveromyces marxianus exoinulinase using site-directed mutagenesis. Wang CH; Xiong WP; Huang C; Li XM; Wang QY; Huang RB J Sci Food Agric; 2021 Apr; 101(6):2472-2482. PubMed ID: 33034040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]