These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 30797562)
21. Virtual Reality for Shoulder Rehabilitation: Accuracy Evaluation of Oculus Quest 2. Carnevale A; Mannocchi I; Sassi MSH; Carli M; De Luca G; Longo UG; Denaro V; Schena E Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898015 [TBL] [Abstract][Full Text] [Related]
22. Application of virtual reality head mounted display for investigation of movement: a novel effect of orientation of attention. Quinlivan B; Butler JS; Beiser I; Williams L; McGovern E; O'Riordan S; Hutchinson M; Reilly RB J Neural Eng; 2016 Oct; 13(5):056006. PubMed ID: 27518212 [TBL] [Abstract][Full Text] [Related]
23. Virtual reality head-mounted goggles increase the body sway of young adults during standing posture. Imaizumi LFI; Polastri PF; Penedo T; Vieira LHP; Simieli L; Navega FRF; Monteiro CBM; Rodrigues ST; Barbieri FA Neurosci Lett; 2020 Oct; 737():135333. PubMed ID: 32860888 [TBL] [Abstract][Full Text] [Related]
24. Virtual Reality-A Supplement to Posturography or a Novel Balance Assessment Tool? Rosiak O; Puzio A; Kaminska D; Zwolinski G; Jozefowicz-Korczynska M Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298254 [TBL] [Abstract][Full Text] [Related]
25. Reaching in Several Realities: Motor and Cognitive Benefits of Different Visualization Technologies. Wenk N; Penalver-Andres J; Palma R; Buetler KA; Muri R; Nef T; Marchal-Crespo L IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1037-1042. PubMed ID: 31374766 [TBL] [Abstract][Full Text] [Related]
26. Comparison between wrap around screens and a head mounted display on driver muscle and kinematic responses to a pedestrian hazard. Filio D; Ziraldo E; Dony L; Gonzalez D; Oliver M Appl Ergon; 2023 Jan; 106():103878. PubMed ID: 36001925 [TBL] [Abstract][Full Text] [Related]
27. A quantitative method for evaluation of 6 degree of freedom virtual reality systems. Jost TA; Drewelow G; Koziol S; Rylander J J Biomech; 2019 Dec; 97():109379. PubMed ID: 31679757 [TBL] [Abstract][Full Text] [Related]
28. Exploratory factor analysis and validity of the virtual reality symptom questionnaire and computer use survey. Del Cid DA; Larranaga D; Leitao M; Mosher RL; Berzenski SR; Gandhi V; Drew SA Ergonomics; 2021 Jan; 64(1):69-77. PubMed ID: 32921282 [TBL] [Abstract][Full Text] [Related]
29. Weighting and reweighting of visual input via head mounted display given unilateral peripheral vestibular dysfunction. Lubetzky AV; Harel D; Kelly J; Hujsak BD; Perlin K Hum Mov Sci; 2019 Dec; 68():102526. PubMed ID: 31669803 [TBL] [Abstract][Full Text] [Related]
30. Measurement Accuracy of the HTC VIVE Tracker 3.0 Compared to Vicon System for Generating Valid Positional Feedback in Virtual Reality. Merker S; Pastel S; Bürger D; Schwadtke A; Witte K Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687827 [TBL] [Abstract][Full Text] [Related]
31. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation. Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103 [TBL] [Abstract][Full Text] [Related]
32. Effect of viewing mode on pathfinding in immersive Virtual Reality. White PJ; Byagowi A; Moussavi Z Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4619-22. PubMed ID: 26737323 [TBL] [Abstract][Full Text] [Related]
33. Reliability and Validity of a Virtual Reality-Based System for Evaluating Postural Stability. Liang HW; Chi SY; Chen BY; Hwang YH IEEE Trans Neural Syst Rehabil Eng; 2021; 29():85-91. PubMed ID: 33125332 [TBL] [Abstract][Full Text] [Related]
34. Decrease in head sway as a measure of sensory integration following vestibular rehabilitation: A randomized controlled trial. Lubetzky AV; Harel D; Krishnamoorthy S; Fu G; Morris B; Medlin A; Wang Z; Perlin K; Roginska A; Cosetti M; Kelly J J Vestib Res; 2023; 33(3):213-226. PubMed ID: 36911951 [TBL] [Abstract][Full Text] [Related]
35. An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment. Vox JP; Weber A; Wolf KI; Izdebski K; Schüler T; König P; Wallhoff F; Friemert D Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34062827 [TBL] [Abstract][Full Text] [Related]
36. Effects of the Loss of Binocular and Motion Parallax on Static Postural Stability. Ishikawa K; Hasegawa N; Yokoyama A; Sakaki Y; Akagi H; Kawata A; Mani H; Asaka T Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112477 [TBL] [Abstract][Full Text] [Related]
37. Quantitative Comparison of Hand Kinematics Measured with a Markerless Commercial Head-Mounted Display and a Marker-Based Motion Capture System in Stroke Survivors. Casile A; Fregna G; Boarini V; Paoluzzi C; Manfredini F; Lamberti N; Baroni A; Straudi S Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765963 [TBL] [Abstract][Full Text] [Related]
38. Assessing Saccadic Eye Movements With Head-Mounted Display Virtual Reality Technology. Imaoka Y; Flury A; de Bruin ED Front Psychiatry; 2020; 11():572938. PubMed ID: 33093838 [TBL] [Abstract][Full Text] [Related]
39. Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye's Usability. Sipatchin A; Wahl S; Rifai K Healthcare (Basel); 2021 Feb; 9(2):. PubMed ID: 33572072 [TBL] [Abstract][Full Text] [Related]
40. Measuring motion-to-photon latency for sensorimotor experiments with virtual reality systems. Warburton M; Mon-Williams M; Mushtaq F; Morehead JR Behav Res Methods; 2023 Oct; 55(7):3658-3678. PubMed ID: 36217006 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]