BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 3079759)

  • 1. The interdependence of glycolytic and pentose cycle intermediates in ad libitum fed rats.
    Casazza JP; Veech RL
    J Biol Chem; 1986 Jan; 261(2):690-8. PubMed ID: 3079759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The content of pentose-cycle intermediates in liver in starved, fed ad libitum and meal-fed rats.
    Casazza JP; Veech RL
    Biochem J; 1986 Jun; 236(3):635-41. PubMed ID: 3790084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The measurement of xylulose 5-phosphate, ribulose 5-phosphate, and combined sedoheptulose 7-phosphate and ribose 5-phosphate in liver tissue.
    Casazza JP; Veech RL
    Anal Biochem; 1986 Dec; 159(2):243-8. PubMed ID: 3826613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in nicotinamide and adenine nucleotide systems during mixed-function oxidation of p-nitroanisole in perfused livers from normal and phenobarbital-treated rats.
    Kauffman FC; Evans RK; Thurman RG
    Biochem J; 1977 Sep; 166(3):583-92. PubMed ID: 23104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor.
    Obrosova I; Faller A; Burgan J; Ostrow E; Williamson JR
    Curr Eye Res; 1997 Jan; 16(1):34-43. PubMed ID: 9043821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative and non-oxidative reactions of the cycle in liver.
    Novello F; Gumaa JA; McLean P
    Biochem J; 1969 Mar; 111(5):713-25. PubMed ID: 5791534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early metabolic effects of platelet-derived growth factor and transforming growth factor-beta in rat liver in vivo.
    Reed BY; King MT; Gitomer WL; Veech RL
    J Biol Chem; 1987 Jun; 262(18):8712-5. PubMed ID: 3474228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway.
    Williams JF; Blackmore PF
    Int J Biochem; 1983; 15(6):797-816. PubMed ID: 6862092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei.
    Cronín CN; Nolan DP; Voorheis HP
    FEBS Lett; 1989 Feb; 244(1):26-30. PubMed ID: 2924907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pentose phosphate pathway of glucose metabolism. Enzyme profiles and transient and steady-state content of intermediates of alternative pathways of glucose metabolism in Krebs ascites cells.
    Gumaa KA; McLean P
    Biochem J; 1969 Dec; 115(5):1009-29. PubMed ID: 5360673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative nd non-oxidative reactions and related enzymes of the cycle in adipose tissue.
    Gumaa KA; Novello F; McLean P
    Biochem J; 1969 Sep; 114(2):253-64. PubMed ID: 5810081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Formation of a pentose phosphate cycle metabolite, erythrose-4-phosphate, from initial compounds of glycolysis by transketolase from the rat liver].
    Stepanova NG; Demcheva MV
    Biokhimiia; 1987 Nov; 52(11):1907-13. PubMed ID: 3440115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of dehydroepiandrosterone on liver metabolites.
    Casazza JP; Schaffer WT; Veech RL
    J Nutr; 1986 Feb; 116(2):304-10. PubMed ID: 2935600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo.
    Moritz B; Striegel K; De Graaf AA; Sahm H
    Eur J Biochem; 2000 Jun; 267(12):3442-52. PubMed ID: 10848959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reactions of the cycle.
    Novello F; McLean P
    Biochem J; 1968 May; 107(6):775-91. PubMed ID: 16742603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rates of pentose cycle flux in perfused rat liver. Evaluation of the role of reducing equivalents from the pentose cycle for mixed-function oxidation.
    Belinsky SA; Reinke LA; Scholz R; Kauffman FC; Thurman RG
    Mol Pharmacol; 1985 Oct; 28(4):371-6. PubMed ID: 4058419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
    Rauch B; Pahlke J; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diminished pentose cycle flux in perfused livers of ethanol-fed rats.
    Reinke LA; Tupper JS; Smith PR; Sweeny DJ
    Mol Pharmacol; 1987 Jun; 31(6):631-7. PubMed ID: 3600608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydrogenases of the pentose phosphate pathway in rat liver peroxisomes.
    Antonenkov VD
    Eur J Biochem; 1989 Jul; 183(1):75-82. PubMed ID: 2753047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.