These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30797685)

  • 1. Acquiring Control: The Evolution of Stomatal Signalling Pathways.
    Sussmilch FC; Schultz J; Hedrich R; Roelfsema MRG
    Trends Plant Sci; 2019 Apr; 24(4):342-351. PubMed ID: 30797685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling.
    Brodribb TJ; McAdam SA
    PLoS One; 2013; 8(11):e82057. PubMed ID: 24278470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fern Stomatal Responses to ABA and CO
    Hõrak H; Kollist H; Merilo E
    Plant Physiol; 2017 Jun; 174(2):672-679. PubMed ID: 28351911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential responses of stomatal kinetics and steady-state conductance to abscisic acid in a fern: comparison with a gymnosperm and an angiosperm.
    Grantz DA; Linscheid BS; Grulke NE
    New Phytol; 2019 Jun; 222(4):1883-1892. PubMed ID: 30740702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of mechanisms driving the stomatal response to vapor pressure deficit.
    McAdam SA; Brodribb TJ
    Plant Physiol; 2015 Mar; 167(3):833-43. PubMed ID: 25637454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants?
    Franks PJ; Britton-Harper ZJ
    New Phytol; 2016 Aug; 211(3):819-27. PubMed ID: 27214852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What are the evolutionary origins of stomatal responses to abscisic acid in land plants?
    Sussmilch FC; Brodribb TJ; McAdam SA
    J Integr Plant Biol; 2017 Apr; 59(4):240-260. PubMed ID: 28093875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stomatal responses to vapour pressure deficit are regulated by high speed gene expression in angiosperms.
    McAdam SA; Sussmilch FC; Brodribb TJ
    Plant Cell Environ; 2016 Mar; 39(3):485-91. PubMed ID: 26353082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moss stomata do not respond to light and CO
    Kubásek J; Hájek T; Duckett J; Pressel S; Šantrůček J
    New Phytol; 2021 Jun; 230(5):1815-1828. PubMed ID: 33458818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants.
    McAdam SA; Brodribb TJ
    Plant Physiol; 2016 Jul; 171(3):2008-16. PubMed ID: 27208264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormonal dynamics contributes to divergence in seasonal stomatal behaviour in a monsoonal plant community.
    McAdam SA; Brodribb TJ
    Plant Cell Environ; 2015 Mar; 38(3):423-32. PubMed ID: 24995884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive origins of stomatal control in vascular plants.
    Brodribb TJ; McAdam SA
    Science; 2011 Feb; 331(6017):582-5. PubMed ID: 21163966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the origins of osmotically driven stomatal movements.
    Sussmilch FC; Roelfsema MRG; Hedrich R
    New Phytol; 2019 Apr; 222(1):84-90. PubMed ID: 30444541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do stomata of evolutionary distant species differ in sensitivity to environmental signals?
    Roelfsema MR; Hedrich R
    New Phytol; 2016 Aug; 211(3):767-70. PubMed ID: 27397524
    [No Abstract]   [Full Text] [Related]  

  • 15. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought.
    Nolan RH; Tarin T; Santini NS; McAdam SAM; Ruman R; Eamus D
    Plant Cell Environ; 2017 Dec; 40(12):3122-3134. PubMed ID: 28982212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling.
    Chater C; Peng K; Movahedi M; Dunn JA; Walker HJ; Liang YK; McLachlan DH; Casson S; Isner JC; Wilson I; Neill SJ; Hedrich R; Gray JE; Hetherington AM
    Curr Biol; 2015 Oct; 25(20):2709-16. PubMed ID: 26455301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure.
    Lind C; Dreyer I; López-Sanjurjo EJ; von Meyer K; Ishizaki K; Kohchi T; Lang D; Zhao Y; Kreuzer I; Al-Rasheid KA; Ronne H; Reski R; Zhu JK; Geiger D; Hedrich R
    Curr Biol; 2015 Mar; 25(7):928-35. PubMed ID: 25802151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abscisic acid-independent stomatal CO
    Hsu PK; Takahashi Y; Munemasa S; Merilo E; Laanemets K; Waadt R; Pater D; Kollist H; Schroeder JI
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):E9971-E9980. PubMed ID: 30282744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups.
    Shtein I; Shelef Y; Marom Z; Zelinger E; Schwartz A; Popper ZA; Bar-On B; Harpaz-Saad S
    Ann Bot; 2017 Apr; 119(6):1021-1033. PubMed ID: 28158449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of calcium in ABA-induced gene expression and stomatal movements.
    Webb AA; Larman MG; Montgomery LT; Taylor JE; Hetherington AM
    Plant J; 2001 May; 26(3):351-62. PubMed ID: 11439123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.