These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30797773)

  • 1. Convergent Identification and Interrogation of Tumor-Intrinsic Factors that Modulate Cancer Immunity In Vivo.
    Codina A; Renauer PA; Wang G; Chow RD; Park JJ; Ye H; Zhang K; Dong MB; Gassaway B; Ye L; Errami Y; Shen L; Chang A; Jain D; Herbst RS; Bosenberg M; Rinehart J; Fan R; Chen S
    Cell Syst; 2019 Feb; 8(2):136-151.e7. PubMed ID: 30797773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CRISPR Platform for Targeted In Vivo Screens.
    Maranda V; Zhang Y; Vizeacoumar FS; Freywald A; Vizeacoumar FJ
    Methods Mol Biol; 2023; 2614():397-409. PubMed ID: 36587138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer CRISPR Screens In Vivo.
    Chow RD; Chen S
    Trends Cancer; 2018 May; 4(5):349-358. PubMed ID: 29709259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR-mediated direct in vivo screening.
    Wang G; Chow RD; Ye L; Guzman CD; Dai X; Dong MB; Zhang F; Sharp PA; Platt RJ; Chen S
    Sci Adv; 2018 Feb; 4(2):eaao5508. PubMed ID: 29503867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial CRISPR genomics identifies regulators of the tumor microenvironment.
    Dhainaut M; Rose SA; Akturk G; Wroblewska A; Nielsen SR; Park ES; Buckup M; Roudko V; Pia L; Sweeney R; Le Berichel J; Wilk CM; Bektesevic A; Lee BH; Bhardwaj N; Rahman AH; Baccarini A; Gnjatic S; Pe'er D; Merad M; Brown BD
    Cell; 2022 Mar; 185(7):1223-1239.e20. PubMed ID: 35290801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes.
    Evers B; Jastrzebski K; Heijmans JP; Grernrum W; Beijersbergen RL; Bernards R
    Nat Biotechnol; 2016 Jun; 34(6):631-3. PubMed ID: 27111720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-content CRISPR screening in tumor immunology.
    Holcomb EA; Pearson AN; Jungles KM; Tate A; James J; Jiang L; Huber AK; Green MD
    Front Immunol; 2022; 13():1041451. PubMed ID: 36479127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies.
    Xiang M; Li H; Zhan Y; Ma D; Gao Q; Fang Y
    Mol Cancer; 2024 Apr; 23(1):73. PubMed ID: 38581063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered CRISPR Systems for Next Generation Gene Therapies.
    Pineda M; Moghadam F; Ebrahimkhani MR; Kiani S
    ACS Synth Biol; 2017 Sep; 6(9):1614-1626. PubMed ID: 28558198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic screens and functional genomics using CRISPR/Cas9 technology.
    Hartenian E; Doench JG
    FEBS J; 2015 Apr; 282(8):1383-93. PubMed ID: 25728500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of Functional Genomics Pipeline in Mouse Epiblast-Like Tissue by Combining Transcriptomic Analysis and Gene Knockdown/Knockin/Knockout, Using RNA Interference and CRISPR/Cas9.
    Takata N; Sakakura E; Kasukawa T; Sakuma T; Yamamoto T; Sasai Y
    Hum Gene Ther; 2016 Jun; 27(6):436-50. PubMed ID: 26839115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research.
    Liu D; Hu R; Palla KJ; Tuskan GA; Yang X
    Curr Opin Plant Biol; 2016 Apr; 30():70-7. PubMed ID: 26896588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR Libraries and Screening.
    Poirier JT
    Prog Mol Biol Transl Sci; 2017; 152():69-82. PubMed ID: 29150005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative analysis of CRISPR screening data uncovers new opportunities for optimizing cancer immunotherapy.
    Li Y; Yang C; Liu Z; Du S; Can S; Zhang H; Zhang L; Huang X; Xiao Z; Li X; Fang J; Qin W; Sun C; Wang C; Chen J; Chen H
    Mol Cancer; 2022 Jan; 21(1):2. PubMed ID: 34980132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Based Lentiviral Knockout Libraries for Functional Genomic Screening and Identification of Phenotype-Related Genes.
    Thomsen EA; Mikkelsen JG
    Methods Mol Biol; 2019; 1961():343-357. PubMed ID: 30912056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A CRISPR Way to Identify Cancer Targets.
    Hahn WC
    N Engl J Med; 2019 Jun; 380(25):2475-2477. PubMed ID: 31216404
    [No Abstract]   [Full Text] [Related]  

  • 18. CRISPR/Cas9 and cancer targets: future possibilities and present challenges.
    White MK; Khalili K
    Oncotarget; 2016 Mar; 7(11):12305-17. PubMed ID: 26840090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution mapping of cancer cell networks using co-functional interactions.
    Boyle EA; Pritchard JK; Greenleaf WJ
    Mol Syst Biol; 2018 Dec; 14(12):e8594. PubMed ID: 30573688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
    Xue HY; Ji LJ; Gao AM; Liu P; He JD; Lu XJ
    J Med Genet; 2016 Feb; 53(2):91-7. PubMed ID: 26673779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.