These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 30797793)
1. A novel machine-learning-based infection screening system via 2013-2017 seasonal influenza patients' vital signs as training datasets. Dagdanpurev S; Abe S; Sun G; Nishimura H; Choimaa L; Hakozaki Y; Matsui T J Infect; 2019 May; 78(5):409-421. PubMed ID: 30797793 [No Abstract] [Full Text] [Related]
2. Rapid screening for influenza using a multivariable logistic regression model to save labor at a clinic in Iwaki, Fukushima, Japan. Nguyen VQ; Abe S; Sun G; Matsuoka A; Nishimura H; Ishihara M; Matsui T Am J Infect Control; 2014 May; 42(5):551-3. PubMed ID: 24773794 [TBL] [Abstract][Full Text] [Related]
3. Design an easy-to-use infection screening system for non-contact monitoring of vital-signs to prevent the spread of pandemic diseases. Sun G; Vinh NQ; Matsuoka A; Miyata K; Chen C; Ueda A; Kim S; Hakozaki Y; Abe S; Takei O; Matsui T Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4811-4. PubMed ID: 25571068 [TBL] [Abstract][Full Text] [Related]
4. Use of rapid influenza diagnostic tests under field conditions as a screening tool during an outbreak of the 2009 novel influenza virus: practical considerations. Sambol AR; Abdalhamid B; Lyden ER; Aden TA; Noel RK; Hinrichs SH J Clin Virol; 2010 Mar; 47(3):229-33. PubMed ID: 20080438 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of clinical features scoring system as screening tool for influenza A (H1N1) in epidemic situations. Ranjan P; Kumari A; Das R; Gupta L; Singh SK; Yadav M J Postgrad Med; 2012; 58(4):265-9. PubMed ID: 23298921 [TBL] [Abstract][Full Text] [Related]
6. A novel screening method for influenza patients using a newly developed non-contact screening system. Matsui T; Hakozaki Y; Suzuki S; Usui T; Kato T; Hasegawa K; Sugiyama Y; Sugamata M; Abe S J Infect; 2010 Apr; 60(4):271-7. PubMed ID: 20138082 [TBL] [Abstract][Full Text] [Related]
7. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. Mao Q; Jay M; Hoffman JL; Calvert J; Barton C; Shimabukuro D; Shieh L; Chettipally U; Fletcher G; Kerem Y; Zhou Y; Das R BMJ Open; 2018 Jan; 8(1):e017833. PubMed ID: 29374661 [TBL] [Abstract][Full Text] [Related]
8. An infectious disease/fever screening radar system which stratifies higher-risk patients within ten seconds using a neural network and the fuzzy grouping method. Sun G; Matsui T; Hakozaki Y; Abe S J Infect; 2015 Mar; 70(3):230-6. PubMed ID: 25541528 [TBL] [Abstract][Full Text] [Related]
9. An intelligent warning model for early prediction of cardiac arrest in sepsis patients. Layeghian Javan S; Sepehri MM; Layeghian Javan M; Khatibi T Comput Methods Programs Biomed; 2019 Sep; 178():47-58. PubMed ID: 31416562 [TBL] [Abstract][Full Text] [Related]
10. Diagnostic value of the rapid influenza antigen test for novel influenza A (H1N1). Lee HM; Park HK; Hwang HS; Chun MY; Pai HJ; Oh SH; Kim DA Scand J Infect Dis; 2011 Jan; 43(1):43-6. PubMed ID: 20735325 [TBL] [Abstract][Full Text] [Related]
11. Machine learning models in breast cancer survival prediction. Montazeri M; Montazeri M; Montazeri M; Beigzadeh A Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of an infrared thermal detection system for fever recognition during the H1N1 influenza pandemic. Hewlett AL; Kalil AC; Strum RA; Zeger WG; Smith PW Infect Control Hosp Epidemiol; 2011 May; 32(5):504-6. PubMed ID: 21515982 [TBL] [Abstract][Full Text] [Related]
13. Multiple Vital-Sign-Based Infection Screening Outperforms Thermography Independent of the Classification Algorithm. Yao Y; Sun G; Matsui T; Hakozaki Y; van Waasen S; Schiek M IEEE Trans Biomed Eng; 2016 May; 63(5):1025-1033. PubMed ID: 26394412 [TBL] [Abstract][Full Text] [Related]
14. Positive predictive value of the UK clinical case definition for H1N1/09 ('swine') influenza. Bicanic T; Solomon AW; Karunaharan N; Chua F; Pope C; Pond M; Herman J; Loyse A; Harrison T; Wansbrough-Jones M J Infect; 2010 May; 60(5):405-7. PubMed ID: 20144897 [No Abstract] [Full Text] [Related]
15. Experience of a screening centre for influenza A/H1N1: the first 50 days. Chan WL; Goh HK; Vasu A; Lim BL; Seow E Emerg Med J; 2011 Jan; 28(1):18-24. PubMed ID: 20943834 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a new rapid test for the detection of influenza A and B viruses and pandemic (H1N1) 2009 virus subtyping in respiratory samples. Lévêque N; Talmud D; Renois F; Barbe C; Andréoletti L J Med Microbiol; 2011 Sep; 60(Pt 9):1403-1404. PubMed ID: 21459910 [No Abstract] [Full Text] [Related]
18. Evaluation of sensitivity and specificity of rapid influenza diagnostic tests for novel swine-origin influenza A (H1N1) virus. Likitnukul S; Boonsiri K; Tangsuksant Y Pediatr Infect Dis J; 2009 Nov; 28(11):1038-9. PubMed ID: 19859024 [No Abstract] [Full Text] [Related]
19. Pandemic H1N1 and seasonal H3N2 influenza infection in the human population show different distributions of viral loads, which substantially affect the performance of rapid influenza tests. Yang JR; Lo J; Ho YL; Wu HS; Liu MT Virus Res; 2011 Jan; 155(1):163-7. PubMed ID: 20875469 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of new hemagglutinin-based rapid antigen test for influenza A pandemic (H1N1) 2009. Kim YK; Uh Y; Chun JK; Kim C; Kim HY J Clin Virol; 2010 Sep; 49(1):69-72. PubMed ID: 20663709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]