BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30797857)

  • 1. Structural Conservation of the Two Phosphoinositide-Binding Sites in WIPI Proteins.
    Liang R; Ren J; Zhang Y; Feng W
    J Mol Biol; 2019 Mar; 431(7):1494-1505. PubMed ID: 30797857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-site-mediated entwining of the linear WIR-motif around WIPI β-propellers for autophagy.
    Ren J; Liang R; Wang W; Zhang D; Yu L; Feng W
    Nat Commun; 2020 Jun; 11(1):2702. PubMed ID: 32483132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis of autophagic functions of WIPI family proteins and their implications for the pathogenesis of β-propeller associated neurodegeneration.
    Shimizu T; Tamura N; Nishimura T; Saito C; Yamamoto H; Mizushima N
    Hum Mol Genet; 2023 Aug; 32(16):2623-2637. PubMed ID: 37364041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Atg18 and the WIPIs sense phosphatidylinositol 3-phosphate.
    Baskaran S; Ragusa MJ; Hurley JH
    Autophagy; 2012 Dec; 8(12):1851-2. PubMed ID: 22996041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy.
    Baskaran S; Ragusa MJ; Boura E; Hurley JH
    Mol Cell; 2012 Aug; 47(3):339-48. PubMed ID: 22704557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family.
    Krick R; Busse RA; Scacioc A; Stephan M; Janshoff A; Thumm M; Kühnel K
    Proc Natl Acad Sci U S A; 2012 Jul; 109(30):E2042-9. PubMed ID: 22753491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for membrane recruitment of ATG16L1 by WIPI2 in autophagy.
    Strong LM; Chang C; Riley JF; Boecker CA; Flower TG; Buffalo CZ; Ren X; Stavoe AK; Holzbaur EL; Hurley JH
    Elife; 2021 Sep; 10():. PubMed ID: 34505572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome.
    Proikas-Cezanne T; Takacs Z; Dönnes P; Kohlbacher O
    J Cell Sci; 2015 Jan; 128(2):207-17. PubMed ID: 25568150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of PROPPIN-Phosphoinositide Binding and Role of Loop 6CD in PROPPIN-Membrane Binding.
    Busse RA; Scacioc A; Krick R; Pérez-Lara Á; Thumm M; Kühnel K
    Biophys J; 2015 May; 108(9):2223-34. PubMed ID: 25954880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18.
    Watanabe Y; Kobayashi T; Yamamoto H; Hoshida H; Akada R; Inagaki F; Ohsumi Y; Noda NN
    J Biol Chem; 2012 Sep; 287(38):31681-90. PubMed ID: 22851171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WIPI1 promotes fission of endosomal transport carriers and formation of autophagosomes through distinct mechanisms.
    De Leo MG; Berger P; Mayer A
    Autophagy; 2021 Nov; 17(11):3644-3670. PubMed ID: 33685363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy.
    Bakula D; Müller AJ; Zuleger T; Takacs Z; Franz-Wachtel M; Thost AK; Brigger D; Tschan MP; Frickey T; Robenek H; Macek B; Proikas-Cezanne T
    Nat Commun; 2017 May; 8():15637. PubMed ID: 28561066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. It takes two to tango: PROPPINs use two phosphoinositide-binding sites.
    Thumm M; Busse RA; Scacioc A; Stephan M; Janshoff A; Kühnel K; Krick R
    Autophagy; 2013 Jan; 9(1):106-7. PubMed ID: 23069643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human WIPI β-propeller function in autophagy and neurodegeneration.
    Proikas-Cezanne T; Haas ML; Pastor-Maldonado CJ; Schüssele DS
    FEBS Lett; 2024 Jan; 598(1):127-139. PubMed ID: 38058212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of PROPPIN-Phosphoinositide Binding by Stopped-Flow Fluorescence Spectroscopy.
    Pérez-Lara Á; Jahn R
    Methods Mol Biol; 2021; 2251():205-214. PubMed ID: 33481242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing mammalian autophagy by WIPI-1/Atg18 puncta formation.
    Proikas-Cezanne T; Pfisterer SG
    Methods Enzymol; 2009; 452():247-60. PubMed ID: 19200887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of Atg18 reveals a new binding site for Atg2 in Saccharomyces cerevisiae.
    Lei Y; Tang D; Liao G; Xu L; Liu S; Chen Q; Li C; Duan J; Wang K; Wang J; Sun B; Li Z; Dai L; Cheng W; Qi S; Lu K
    Cell Mol Life Sci; 2021 Mar; 78(5):2131-2143. PubMed ID: 32809042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy.
    Proikas-Cezanne T; Ruckerbauer S; Stierhof YD; Berg C; Nordheim A
    FEBS Lett; 2007 Jul; 581(18):3396-404. PubMed ID: 17618624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence-based imaging of autophagy progression by human WIPI protein detection.
    Thost AK; Dönnes P; Kohlbacher O; Proikas-Cezanne T
    Methods; 2015 Mar; 75():69-78. PubMed ID: 25462558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 β-propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition.
    Gaugel A; Bakula D; Hoffmann A; Proikas-Cezanne T
    J Mol Signal; 2012 Oct; 7(1):16. PubMed ID: 23088497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.