BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 30797879)

  • 1. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles.
    Ahmad A; Khan JM; Haque S
    Biochimie; 2019 May; 160():61-75. PubMed ID: 30797879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endosomal escape pathways for delivery of biologicals.
    Varkouhi AK; Scholte M; Storm G; Haisma HJ
    J Control Release; 2011 May; 151(3):220-8. PubMed ID: 21078351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
    Cupic KI; Rennick JJ; Johnston AP; Such GK
    Nanomedicine (Lond); 2019 Jan; 14(2):215-223. PubMed ID: 30511881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles.
    Chen J; Li J; Zhou J; Lin Z; Cavalieri F; Czuba-Wojnilowicz E; Hu Y; Glab A; Ju Y; Richardson JJ; Caruso F
    ACS Nano; 2019 Oct; 13(10):11653-11664. PubMed ID: 31573181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivery of 5'-triphosphate RNA with endosomolytic nanoparticles potently activates RIG-I to improve cancer immunotherapy.
    Jacobson ME; Wang-Bishop L; Becker KW; Wilson JT
    Biomater Sci; 2019 Jan; 7(2):547-559. PubMed ID: 30379158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors.
    Degors IMS; Wang C; Rehman ZU; Zuhorn IS
    Acc Chem Res; 2019 Jul; 52(7):1750-1760. PubMed ID: 31243966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-responsive cationic liposome for endosomal escape mediated drug delivery.
    Rayamajhi S; Marchitto J; Nguyen TDT; Marasini R; Celia C; Aryal S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110804. PubMed ID: 31972443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles.
    Selby LI; Cortez-Jugo CM; Such GK; Johnston APR
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Sep; 9(5):. PubMed ID: 28160452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endosomal Escape and Cytosolic Penetration of Macromolecules Mediated by Synthetic Delivery Agents.
    Brock DJ; Kondow-McConaghy HM; Hager EC; Pellois JP
    Bioconjug Chem; 2019 Feb; 30(2):293-304. PubMed ID: 30462487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles.
    Butt AM; Abdullah N; Rani NNIM; Ahmad N; Amin MCIM
    Pharm Res; 2022 Jun; 39(6):1047-1064. PubMed ID: 35619043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proton sponge hypothesis: Fable or fact?
    Vermeulen LMP; De Smedt SC; Remaut K; Braeckmans K
    Eur J Pharm Biopharm; 2018 Aug; 129():184-190. PubMed ID: 29859281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery.
    Chen G; Wang Y; Xie R; Gong S
    J Control Release; 2017 Aug; 259():105-114. PubMed ID: 28159516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal monitoring endocytic and cytosolic pH gradients with endosomal escaping pH-responsive micellar nanocarriers.
    Hu J; Liu G; Wang C; Liu T; Zhang G; Liu S
    Biomacromolecules; 2014 Nov; 15(11):4293-301. PubMed ID: 25317967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery.
    Smith SA; Selby LI; Johnston APR; Such GK
    Bioconjug Chem; 2019 Feb; 30(2):263-272. PubMed ID: 30452233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Mesoporous Silica Nanoparticles to Overcome Biological Barriers by Incorporating Targeting and Endosomal Escape.
    Gisbert-Garzarán M; Lozano D; Matsumoto K; Komatsu A; Manzano M; Tamanoi F; Vallet-Regí M
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9656-9666. PubMed ID: 33596035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment.
    El-Sayed A; Futaki S; Harashima H
    AAPS J; 2009 Mar; 11(1):13-22. PubMed ID: 19125334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of Endosomolytic Peptides with Varying Disruption Mechanisms into EGFR-Targeted Protein Conjugates: The Effect on Intracellular Protein Delivery and EGFR Specificity in Breast Cancer Cells.
    Lieser RM; Li Q; Chen W; Sullivan MO
    Mol Pharm; 2022 Feb; 19(2):661-673. PubMed ID: 35040326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and optimization of tunable endosomal escape parameters for enhanced efficacy in peptide-targeted prodrug-loaded nanoparticles.
    Mejia F; Khan S; Omstead DT; Minetos C; Bilgicer B
    Nanoscale; 2022 Jan; 14(4):1226-1240. PubMed ID: 34993530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycation gene delivery systems: escape from endosomes to cytosol.
    Cho YW; Kim JD; Park K
    J Pharm Pharmacol; 2003 Jun; 55(6):721-34. PubMed ID: 12841931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel endosomolytic peptides for enhancing gene delivery in nanoparticles.
    Ahmad A; Ranjan S; Zhang W; Zou J; Pyykkö I; Kinnunen PK
    Biochim Biophys Acta; 2015 Feb; 1848(2):544-53. PubMed ID: 25445677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.