These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 30797879)

  • 1. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles.
    Ahmad A; Khan JM; Haque S
    Biochimie; 2019 May; 160():61-75. PubMed ID: 30797879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endosomal escape pathways for delivery of biologicals.
    Varkouhi AK; Scholte M; Storm G; Haisma HJ
    J Control Release; 2011 May; 151(3):220-8. PubMed ID: 21078351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
    Cupic KI; Rennick JJ; Johnston AP; Such GK
    Nanomedicine (Lond); 2019 Jan; 14(2):215-223. PubMed ID: 30511881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles.
    Chen J; Li J; Zhou J; Lin Z; Cavalieri F; Czuba-Wojnilowicz E; Hu Y; Glab A; Ju Y; Richardson JJ; Caruso F
    ACS Nano; 2019 Oct; 13(10):11653-11664. PubMed ID: 31573181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivery of 5'-triphosphate RNA with endosomolytic nanoparticles potently activates RIG-I to improve cancer immunotherapy.
    Jacobson ME; Wang-Bishop L; Becker KW; Wilson JT
    Biomater Sci; 2019 Jan; 7(2):547-559. PubMed ID: 30379158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors.
    Degors IMS; Wang C; Rehman ZU; Zuhorn IS
    Acc Chem Res; 2019 Jul; 52(7):1750-1760. PubMed ID: 31243966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-responsive cationic liposome for endosomal escape mediated drug delivery.
    Rayamajhi S; Marchitto J; Nguyen TDT; Marasini R; Celia C; Aryal S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110804. PubMed ID: 31972443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles.
    Selby LI; Cortez-Jugo CM; Such GK; Johnston APR
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Sep; 9(5):. PubMed ID: 28160452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endosomal Escape and Cytosolic Penetration of Macromolecules Mediated by Synthetic Delivery Agents.
    Brock DJ; Kondow-McConaghy HM; Hager EC; Pellois JP
    Bioconjug Chem; 2019 Feb; 30(2):293-304. PubMed ID: 30462487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles.
    Butt AM; Abdullah N; Rani NNIM; Ahmad N; Amin MCIM
    Pharm Res; 2022 Jun; 39(6):1047-1064. PubMed ID: 35619043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Targeted Drug Delivery through Cell-Specific Endosomal Escape.
    Chen P; Cabral H
    ChemMedChem; 2024 Sep; 19(18):e202400274. PubMed ID: 38830827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proton sponge hypothesis: Fable or fact?
    Vermeulen LMP; De Smedt SC; Remaut K; Braeckmans K
    Eur J Pharm Biopharm; 2018 Aug; 129():184-190. PubMed ID: 29859281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery.
    Chen G; Wang Y; Xie R; Gong S
    J Control Release; 2017 Aug; 259():105-114. PubMed ID: 28159516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal monitoring endocytic and cytosolic pH gradients with endosomal escaping pH-responsive micellar nanocarriers.
    Hu J; Liu G; Wang C; Liu T; Zhang G; Liu S
    Biomacromolecules; 2014 Nov; 15(11):4293-301. PubMed ID: 25317967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery.
    Smith SA; Selby LI; Johnston APR; Such GK
    Bioconjug Chem; 2019 Feb; 30(2):263-272. PubMed ID: 30452233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Mesoporous Silica Nanoparticles to Overcome Biological Barriers by Incorporating Targeting and Endosomal Escape.
    Gisbert-Garzarán M; Lozano D; Matsumoto K; Komatsu A; Manzano M; Tamanoi F; Vallet-Regí M
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9656-9666. PubMed ID: 33596035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment.
    El-Sayed A; Futaki S; Harashima H
    AAPS J; 2009 Mar; 11(1):13-22. PubMed ID: 19125334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of Endosomolytic Peptides with Varying Disruption Mechanisms into EGFR-Targeted Protein Conjugates: The Effect on Intracellular Protein Delivery and EGFR Specificity in Breast Cancer Cells.
    Lieser RM; Li Q; Chen W; Sullivan MO
    Mol Pharm; 2022 Feb; 19(2):661-673. PubMed ID: 35040326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and optimization of tunable endosomal escape parameters for enhanced efficacy in peptide-targeted prodrug-loaded nanoparticles.
    Mejia F; Khan S; Omstead DT; Minetos C; Bilgicer B
    Nanoscale; 2022 Jan; 14(4):1226-1240. PubMed ID: 34993530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycation gene delivery systems: escape from endosomes to cytosol.
    Cho YW; Kim JD; Park K
    J Pharm Pharmacol; 2003 Jun; 55(6):721-34. PubMed ID: 12841931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.