BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30797902)

  • 1. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest.
    Oh J; Xu J; Chong J; Wang D
    Methods; 2019 Apr; 159-160():29-34. PubMed ID: 30797902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation.
    Oh J; Xu J; Chong J; Wang D
    Biochim Biophys Acta Gene Regul Mech; 2021 Jan; 1864(1):194659. PubMed ID: 33271312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA polymerase II trapped on a molecular treadmill: Structural basis of persistent transcriptional arrest by a minor groove DNA binder.
    Oh J; Jia T; Xu J; Chong J; Dervan PB; Wang D
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair.
    Wang W; Xu J; Chong J; Wang D
    DNA Repair (Amst); 2018 Nov; 71():43-55. PubMed ID: 30174298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis.
    Kuraoka I; Endou M; Yamaguchi Y; Wada T; Handa H; Tanaka K
    J Biol Chem; 2003 Feb; 278(9):7294-9. PubMed ID: 12466278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Biology of RNA Polymerase II Transcription: 20 Years On.
    Osman S; Cramer P
    Annu Rev Cell Dev Biol; 2020 Oct; 36():1-34. PubMed ID: 32822539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of transcription-coupled DNA modification recognition.
    Shin JH; Xu L; Wang D
    Cell Biosci; 2017; 7():9. PubMed ID: 28239446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What happens at the lesion does not stay at the lesion: Transcription-coupled nucleotide excision repair and the effects of DNA damage on transcription in cis and trans.
    Geijer ME; Marteijn JA
    DNA Repair (Amst); 2018 Nov; 71():56-68. PubMed ID: 30195642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders.
    Jia N; Guo C; Nakazawa Y; van den Heuvel D; Luijsterburg MS; Ogi T
    DNA Repair (Amst); 2021 Oct; 106():103192. PubMed ID: 34358806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA damage-dependent transcriptional arrest and termination of RNA polymerase II elongation complexes in DNA template containing HIV-1 promoter.
    Wang Z; Rana TM
    Proc Natl Acad Sci U S A; 1997 Jun; 94(13):6688-93. PubMed ID: 9192626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of RNA Polymerase II ubiquitination and degradation by yeast mRNA 3'-end processing factors is a conserved DNA damage response in eukaryotes.
    Kuehner JN; Kaufman JW; Moore C
    DNA Repair (Amst); 2017 Sep; 57():151-160. PubMed ID: 28783563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nature of the nucleosomal barrier to RNA polymerase II.
    Kireeva ML; Hancock B; Cremona GH; Walter W; Studitsky VM; Kashlev M
    Mol Cell; 2005 Apr; 18(1):97-108. PubMed ID: 15808512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA photodamage recognition by RNA polymerase II.
    Brueckner F; Cramer P
    FEBS Lett; 2007 Jun; 581(15):2757-60. PubMed ID: 17521634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II.
    Wang W; Walmacq C; Chong J; Kashlev M; Wang D
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):E2538-E2545. PubMed ID: 29487211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro.
    Lee KB; Wang D; Lippard SJ; Sharp PA
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4239-44. PubMed ID: 11904382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications.
    Xu L; Wang W; Chong J; Shin JH; Xu J; Wang D
    Crit Rev Biochem Mol Biol; 2015; 50(6):503-19. PubMed ID: 26392149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PTEN modulates gene transcription by redistributing genome-wide RNA polymerase II occupancy.
    Abbas A; Padmanabhan R; Romigh T; Eng C
    Hum Mol Genet; 2019 Sep; 28(17):2826-2834. PubMed ID: 31127935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.
    Xu J; Lahiri I; Wang W; Wier A; Cianfrocco MA; Chong J; Hare AA; Dervan PB; DiMaio F; Leschziner AE; Wang D
    Nature; 2017 Nov; 551(7682):653-657. PubMed ID: 29168508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TRIM28 as a novel transcriptional elongation factor.
    Bunch H; Calderwood SK
    BMC Mol Biol; 2015 Aug; 16():14. PubMed ID: 26293668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif.
    Xu L; Wang W; Gotte D; Yang F; Hare AA; Welch TR; Li BC; Shin JH; Chong J; Strathern JN; Dervan PB; Wang D
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12426-12431. PubMed ID: 27791148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.