These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 30797902)
1. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest. Oh J; Xu J; Chong J; Wang D Methods; 2019 Apr; 159-160():29-34. PubMed ID: 30797902 [TBL] [Abstract][Full Text] [Related]
2. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. Oh J; Xu J; Chong J; Wang D Biochim Biophys Acta Gene Regul Mech; 2021 Jan; 1864(1):194659. PubMed ID: 33271312 [TBL] [Abstract][Full Text] [Related]
3. RNA polymerase II trapped on a molecular treadmill: Structural basis of persistent transcriptional arrest by a minor groove DNA binder. Oh J; Jia T; Xu J; Chong J; Dervan PB; Wang D Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022237 [TBL] [Abstract][Full Text] [Related]
4. Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. Wang W; Xu J; Chong J; Wang D DNA Repair (Amst); 2018 Nov; 71():43-55. PubMed ID: 30174298 [TBL] [Abstract][Full Text] [Related]
5. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. Kuraoka I; Endou M; Yamaguchi Y; Wada T; Handa H; Tanaka K J Biol Chem; 2003 Feb; 278(9):7294-9. PubMed ID: 12466278 [TBL] [Abstract][Full Text] [Related]
6. Structural Biology of RNA Polymerase II Transcription: 20 Years On. Osman S; Cramer P Annu Rev Cell Dev Biol; 2020 Oct; 36():1-34. PubMed ID: 32822539 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of transcription-coupled DNA modification recognition. Shin JH; Xu L; Wang D Cell Biosci; 2017; 7():9. PubMed ID: 28239446 [TBL] [Abstract][Full Text] [Related]
8. What happens at the lesion does not stay at the lesion: Transcription-coupled nucleotide excision repair and the effects of DNA damage on transcription in cis and trans. Geijer ME; Marteijn JA DNA Repair (Amst); 2018 Nov; 71():56-68. PubMed ID: 30195642 [TBL] [Abstract][Full Text] [Related]
9. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. Jia N; Guo C; Nakazawa Y; van den Heuvel D; Luijsterburg MS; Ogi T DNA Repair (Amst); 2021 Oct; 106():103192. PubMed ID: 34358806 [TBL] [Abstract][Full Text] [Related]
10. DNA damage-dependent transcriptional arrest and termination of RNA polymerase II elongation complexes in DNA template containing HIV-1 promoter. Wang Z; Rana TM Proc Natl Acad Sci U S A; 1997 Jun; 94(13):6688-93. PubMed ID: 9192626 [TBL] [Abstract][Full Text] [Related]
11. Stimulation of RNA Polymerase II ubiquitination and degradation by yeast mRNA 3'-end processing factors is a conserved DNA damage response in eukaryotes. Kuehner JN; Kaufman JW; Moore C DNA Repair (Amst); 2017 Sep; 57():151-160. PubMed ID: 28783563 [TBL] [Abstract][Full Text] [Related]
12. Nature of the nucleosomal barrier to RNA polymerase II. Kireeva ML; Hancock B; Cremona GH; Walter W; Studitsky VM; Kashlev M Mol Cell; 2005 Apr; 18(1):97-108. PubMed ID: 15808512 [TBL] [Abstract][Full Text] [Related]
13. DNA photodamage recognition by RNA polymerase II. Brueckner F; Cramer P FEBS Lett; 2007 Jun; 581(15):2757-60. PubMed ID: 17521634 [TBL] [Abstract][Full Text] [Related]
14. Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II. Wang W; Walmacq C; Chong J; Kashlev M; Wang D Proc Natl Acad Sci U S A; 2018 Mar; 115(11):E2538-E2545. PubMed ID: 29487211 [TBL] [Abstract][Full Text] [Related]
15. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Lee KB; Wang D; Lippard SJ; Sharp PA Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4239-44. PubMed ID: 11904382 [TBL] [Abstract][Full Text] [Related]
16. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Xu L; Wang W; Chong J; Shin JH; Xu J; Wang D Crit Rev Biochem Mol Biol; 2015; 50(6):503-19. PubMed ID: 26392149 [TBL] [Abstract][Full Text] [Related]
17. PTEN modulates gene transcription by redistributing genome-wide RNA polymerase II occupancy. Abbas A; Padmanabhan R; Romigh T; Eng C Hum Mol Genet; 2019 Sep; 28(17):2826-2834. PubMed ID: 31127935 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Xu J; Lahiri I; Wang W; Wier A; Cianfrocco MA; Chong J; Hare AA; Dervan PB; DiMaio F; Leschziner AE; Wang D Nature; 2017 Nov; 551(7682):653-657. PubMed ID: 29168508 [TBL] [Abstract][Full Text] [Related]
19. TRIM28 as a novel transcriptional elongation factor. Bunch H; Calderwood SK BMC Mol Biol; 2015 Aug; 16():14. PubMed ID: 26293668 [TBL] [Abstract][Full Text] [Related]
20. RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif. Xu L; Wang W; Gotte D; Yang F; Hare AA; Welch TR; Li BC; Shin JH; Chong J; Strathern JN; Dervan PB; Wang D Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12426-12431. PubMed ID: 27791148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]