BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30798241)

  • 1. Three-dimensional distribution of permafrost and responses to increasing air temperatures in the head waters of the Yellow River in High Asia.
    Sun A; Zhou J; Yu Z; Jin H; Sheng Y; Yang C
    Sci Total Environ; 2019 May; 666():321-336. PubMed ID: 30798241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China.
    Qin Y; Yang D; Gao B; Wang T; Chen J; Chen Y; Wang Y; Zheng G
    Sci Total Environ; 2017 Dec; 605-606():830-841. PubMed ID: 28683427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal variations and regional differences in air temperature in the permafrost regions in the Northern Hemisphere during 1980-2018.
    Hu G; Zhao L; Wu T; Wu X; Park H; Fedorov A; Wei Y; Li R; Zhu X; Sun Z; Ni J; Zou D
    Sci Total Environ; 2021 Oct; 791():148358. PubMed ID: 34139490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring the Degradation of Island Permafrost Using Time-Series InSAR Technique: A Case Study of Heihe, China.
    Wang S; Xu B; Shan W; Shi J; Li Z; Feng G
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30893773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China.
    Yin G; Niu F; Lin Z; Luo J; Liu M
    Sci Total Environ; 2017 Mar; 581-582():472-485. PubMed ID: 28057338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permafrost is warming at a global scale.
    Biskaborn BK; Smith SL; Noetzli J; Matthes H; Vieira G; Streletskiy DA; Schoeneich P; Romanovsky VE; Lewkowicz AG; Abramov A; Allard M; Boike J; Cable WL; Christiansen HH; Delaloye R; Diekmann B; Drozdov D; Etzelmüller B; Grosse G; Guglielmin M; Ingeman-Nielsen T; Isaksen K; Ishikawa M; Johansson M; Johannsson H; Joo A; Kaverin D; Kholodov A; Konstantinov P; Kröger T; Lambiel C; Lanckman JP; Luo D; Malkova G; Meiklejohn I; Moskalenko N; Oliva M; Phillips M; Ramos M; Sannel ABK; Sergeev D; Seybold C; Skryabin P; Vasiliev A; Wu Q; Yoshikawa K; Zheleznyak M; Lantuit H
    Nat Commun; 2019 Jan; 10(1):264. PubMed ID: 30651568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska.
    Raynolds MK; Walker DA; Ambrosius KJ; Brown J; Everett KR; Kanevskiy M; Kofinas GP; Romanovsky VE; Shur Y; Webber PJ
    Glob Chang Biol; 2014 Apr; 20(4):1211-24. PubMed ID: 24339207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate warming enhances chemical weathering in permafrost-dominated eastern Siberia.
    Wang P; Huang Q; Liu S; Liu Y; Li Z; Pozdniakov SP; Wang T; Kazak ES; Frolova NL; Gabysheva OI; Zhang J; Bai B; Yu J; Min L; Shpakova RN; Hao L; Gabyshev VA
    Sci Total Environ; 2024 Jan; 906():167367. PubMed ID: 37774887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss.
    Helbig M; Wischnewski K; Kljun N; Chasmer LE; Quinton WL; Detto M; Sonnentag O
    Glob Chang Biol; 2016 Dec; 22(12):4048-4066. PubMed ID: 27153776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking permafrost thaw to shifting biogeochemistry and food web resources in an arctic river.
    Kendrick MR; Huryn AD; Bowden WB; Deegan LA; Findlay RH; Hershey AE; Peterson BJ; Beneš JP; Schuett EB
    Glob Chang Biol; 2018 Dec; 24(12):5738-5750. PubMed ID: 30218544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Responses of alpine grassland landscape in the source region of Shule River Basin to topographical factors and frozen ground types].
    Chen JJ; Yi SH; Qin Y; Wang XY
    Ying Yong Sheng Tai Xue Bao; 2014 Jun; 25(6):1599-606. PubMed ID: 25223013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.
    Hicks Pries CE; van Logtestijn RS; Schuur EA; Natali SM; Cornelissen JH; Aerts R; Dorrepaal E
    Glob Chang Biol; 2015 Dec; 21(12):4508-19. PubMed ID: 26150277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial variations and controlling factors of ground ice isotopes in permafrost areas of the central Qinghai-Tibet Plateau.
    Wang W; Wu T; Chen Y; Li R; Xie C; Qiao Y; Zhu X; Hao J; Ni J
    Sci Total Environ; 2019 Oct; 688():542-554. PubMed ID: 31254820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permafrost table temperature and active layer thickness variability on James Ross Island, Antarctic Peninsula, in 2004-2021.
    Kaplan Pastíriková L; Hrbáček F; Uxa T; Láska K
    Sci Total Environ; 2023 Apr; 869():161690. PubMed ID: 36657667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permafrost and infrastructure in the usa Basin (Northeast European Russia): possible impacts of global warming.
    Mazhitova G; Karstkarel N; Oberman N; Romanovsky V; Kuhry P
    Ambio; 2004 Aug; 33(6):289-94. PubMed ID: 15387061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using MODIS Land Surface Temperatures for Permafrost Thermal Modeling in Beiluhe Basin on the Qinghai-Tibet Plateau.
    Li A; Xia C; Bao C; Yin G
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permafrost thaw and climate warming may decrease the CO
    Raudina TV; Loiko SV; Lim A; Manasypov RM; Shirokova LS; Istigechev GI; Kuzmina DM; Kulizhsky SP; Vorobyev SN; Pokrovsky OS
    Sci Total Environ; 2018 Sep; 634():1004-1023. PubMed ID: 29660859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projections of surface air temperature required to sustain permafrost and importance of adaptation to climate change in the Daisetsu Mountains, Japan.
    Yokohata T; Iwahana G; Sone T; Saito K; Ishizaki NN; Kubo T; Oguma H; Uchida M
    Sci Rep; 2021 Jul; 11(1):15518. PubMed ID: 34330943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia.
    Sun A; Yu Z; Zhou J; Acharya K; Ju Q; Xing R; Huang D; Wen L
    Sci Total Environ; 2020 Apr; 712():135632. PubMed ID: 31791798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient and Transition Factors in Modeling Permafrost Thaw and Groundwater Flow.
    Langford JE; Schincariol RA; Nagare RM; Quinton WL; Mohammed AA
    Ground Water; 2020 Mar; 58(2):258-268. PubMed ID: 31081132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.