These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 30798340)
1. Advances in chemometric control of commercial diesel adulteration by kerosene using IR spectroscopy. Moura HOMA; Câmara ABF; Santos MCD; Morais CLM; de Lima LAS; Lima KMG; de Carvalho LS Anal Bioanal Chem; 2019 Apr; 411(11):2301-2315. PubMed ID: 30798340 [TBL] [Abstract][Full Text] [Related]
2. Multivariate strategy for identifying and quantifying jet fuel contaminants by MCR-ALS/PLS models coupled to combined MIR/NIR spectra. Câmara ABF; da Silva WJO; Moura HOMA; Silva NKN; de Lima KMG; de Carvalho LS Anal Bioanal Chem; 2022 Nov; 414(27):7897-7909. PubMed ID: 36149475 [TBL] [Abstract][Full Text] [Related]
3. Excitation-emission fluorescence spectroscopy coupled with PARAFAC and MCR-ALS with area correlation for investigation of jet fuel contamination. Câmara ABF; da Silva WJO; Neves ACO; Moura HOMA; de Lima KMG; de Carvalho LS Talanta; 2024 Jan; 266(Pt 2):125126. PubMed ID: 37651908 [TBL] [Abstract][Full Text] [Related]
4. Screening analysis to detect adulteration in diesel/biodiesel blends using near infrared spectrometry and multivariate classification. Pontes MJ; Pereira CF; Pimentel MF; Vasconcelos FV; Silva AG Talanta; 2011 Sep; 85(4):2159-65. PubMed ID: 21872073 [TBL] [Abstract][Full Text] [Related]
5. Determination of total sulfur in diesel fuel employing NIR spectroscopy and multivariate calibration. Breitkreitz MC; Raimundo IM; Rohwedder JJ; Pasquini C; Dantas Filho HA; José GE; Araújo MC Analyst; 2003 Sep; 128(9):1204-7. PubMed ID: 14529031 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of physicochemical parameters as indicators of diesel adulteration. Dadson JK; Arthur V; Asiedu NY; Akoto O Heliyon; 2024 Sep; 10(17):e36945. PubMed ID: 39286074 [TBL] [Abstract][Full Text] [Related]
7. Application of correlation constrained multivariate curve resolution alternating least-squares methods for determination of compounds of interest in biodiesel blends using NIR and UV-visible spectroscopic data. de Oliveira RR; de Lima KM; Tauler R; de Juan A Talanta; 2014 Jul; 125():233-41. PubMed ID: 24840439 [TBL] [Abstract][Full Text] [Related]
8. Fuel forensics: Recent advancements in profiling of adulterated fuels by ATR-FTIR spectroscopy and chemometric approaches. Babu BK; Manohar Yadav M; Singh S; Kumar Yadav V Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 312():124049. PubMed ID: 38394884 [TBL] [Abstract][Full Text] [Related]
9. A proposed two-level classification approach for forensic detection of diesel adulteration using NMR spectroscopy and machine learning. Dadson JK; Asiedu NY; Iggo JA; Konstantin L; Ackora-Pra J; Baidoo MF; Akoto O Anal Bioanal Chem; 2024 Aug; 416(20):4457-4468. PubMed ID: 38888602 [TBL] [Abstract][Full Text] [Related]
10. Fluorescent Paper Strips for the Detection of Diesel Adulteration with Smartphone Read-out. Bell J; Gotor R; Rurack K J Vis Exp; 2018 Nov; (141):. PubMed ID: 30474640 [TBL] [Abstract][Full Text] [Related]
11. Hand-Held Refractometer-Based Measurement and Excess Permittivity Analysis Method for Detection of Diesel Oils Adulterated by Kerosene in Field Conditions. Kanyathare B; Peiponen KE Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29758004 [TBL] [Abstract][Full Text] [Related]
12. Biodiesel content determination in diesel fuel blends using near infrared (NIR) spectroscopy and support vector machines (SVM). Alves JC; Poppi RJ Talanta; 2013 Jan; 104():155-61. PubMed ID: 23597903 [TBL] [Abstract][Full Text] [Related]
13. Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants. Castro RC; Ribeiro DSM; Santos JLM; Páscoa RNMJ Talanta; 2021 Aug; 230():122373. PubMed ID: 33934802 [TBL] [Abstract][Full Text] [Related]
14. Determination of residual oil in diesel oil by spectrofluorimetric and chemometric analysis. Corgozinho CN; Pasa VM; Barbeira PJ Talanta; 2008 Jul; 76(2):479-84. PubMed ID: 18585310 [TBL] [Abstract][Full Text] [Related]
15. Using near-infrared overtone regions to determine biodiesel content and adulteration of diesel/biodiesel blends with vegetable oils. de Vasconcelos FV; de Souza PF; Pimentel MF; Pontes MJ; Pereira CF Anal Chim Acta; 2012 Feb; 716():101-7. PubMed ID: 22284883 [TBL] [Abstract][Full Text] [Related]
16. Identification of gasoline adulteration using comprehensive two-dimensional gas chromatography combined to multivariate data processing. Pedroso MP; de Godoy LA; Ferreira EC; Poppi RJ; Augusto F J Chromatogr A; 2008 Aug; 1201(2):176-82. PubMed ID: 18571187 [TBL] [Abstract][Full Text] [Related]
17. Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures: a comparative study. Divya O; Mishra AK Anal Chim Acta; 2007 May; 592(1):82-90. PubMed ID: 17499074 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics. Alves JC; Poppi RJ Analyst; 2013 Nov; 138(21):6477-87. PubMed ID: 23991427 [TBL] [Abstract][Full Text] [Related]
19. Calibration sets selection strategy for the construction of robust PLS models for prediction of biodiesel/diesel blends physico-chemical properties using NIR spectroscopy. Palou A; Miró A; Blanco M; Larraz R; Gómez JF; Martínez T; González JM; Alcalà M Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 180():119-126. PubMed ID: 28284157 [TBL] [Abstract][Full Text] [Related]
20. A study of adulteration in gasoline samples using flame emission spectroscopy and chemometrics tools. de Paulo JM; Mendes G; Barros JE; Barbeira PJ Analyst; 2012 Dec; 137(24):5919-24. PubMed ID: 23087914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]