BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 30798364)

  • 1. Site-specific hourly resolution wet bulb globe temperature reconstruction from gridded daily resolution climate variables for planning climate change adaptation measures.
    Takakura J; Fujimori S; Takahashi K; Hijioka Y; Honda Y
    Int J Biometeorol; 2019 Jun; 63(6):787-800. PubMed ID: 30798364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Heat Stress Exposure among Construction Workers in the Hot Desert Climate of Saudi Arabia.
    Al-Bouwarthan M; Quinn MM; Kriebel D; Wegman DH
    Ann Work Expo Health; 2019 May; 63(5):505-520. PubMed ID: 31051037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of hot days on occupational heat stress in the manufacturing industry: implications for workers' well-being and productivity.
    Pogačar T; Casanueva A; Kozjek K; Ciuha U; Mekjavić IB; Kajfež Bogataj L; Črepinšek Z
    Int J Biometeorol; 2018 Jul; 62(7):1251-1264. PubMed ID: 29600340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Evaluation of Portable Wet Bulb Globe Temperature Monitor Accuracy.
    Cooper E; Grundstein A; Rosen A; Miles J; Ko J; Curry P
    J Athl Train; 2017 Dec; 52(12):1161-1167. PubMed ID: 29154695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence of Occupational Injuries and Within Day Changes in Wet Bulb Temperature Among Sugarcane Harvesters.
    Dally M; Suresh K; Van Dyke M; James KA; Bauer AK; Krisher L; Newman LS
    J Agromedicine; 2023 Jul; 28(3):523-531. PubMed ID: 36650099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric.
    Bröde P; Fiala D; Lemke B; Kjellstrom T
    Int J Biometeorol; 2018 Mar; 62(3):331-345. PubMed ID: 28424950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Future projections of labor hours based on WBGT for Tokyo and Osaka, Japan, using multi-period ensemble dynamical downscale simulations.
    Suzuki-Parker A; Kusaka H
    Int J Biometeorol; 2016 Feb; 60(2):307-10. PubMed ID: 25935576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Heat Stress and Maximum Acceptable Work Time Based on Physiological and Environmental Response in Hot-Dry Climate: A Case Study in Traditional Bakers.
    Afshari D; Moradi S; Ahmadi Angali K; Shirali GA
    Int J Occup Environ Med; 2019 Oct; 10(4):194-202. PubMed ID: 31586384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductions in Labor Capacity from Intensified Heat Stress in China under Future Climate Change.
    Liu X
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32079330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat stress morbidity among US military personnel: Daily exposure and lagged response (1998-2019).
    Lewandowski SA; Shaman JL
    Int J Biometeorol; 2022 Jun; 66(6):1199-1208. PubMed ID: 35292853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.
    Bernard TE; Iheanacho I
    J Occup Environ Hyg; 2015; 12(5):323-33. PubMed ID: 25616731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of climate change-related heat stress on labor productivity in South Korea.
    Lee SW; Lee K; Lim B
    Int J Biometeorol; 2018 Dec; 62(12):2119-2129. PubMed ID: 30244322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping occupational heat exposure and effects in South-East Asia: ongoing time trends 1980-2011 and future estimates to 2050.
    Kjellstrom T; Lemke B; Otto M
    Ind Health; 2013; 51(1):56-67. PubMed ID: 23411757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.
    Hajizadeh R; Golbabaei F; Farhang Dehghan S; Beheshti MH; Jafari SM; Taheri F
    J Res Health Sci; 2016; 16(2):90-5. PubMed ID: 27497777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actual and simulated weather data to evaluate wet bulb globe temperature and heat index as alerts for occupational heat-related illness.
    Morris CE; Gonzales RG; Hodgson MJ; Tustin AW
    J Occup Environ Hyg; 2019 Jan; 16(1):54-65. PubMed ID: 30285564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Universal Thermal Climate Index (UTCI) for assessment of occupational heat stress in open-pit mines.
    Nassiri P; Monazzam MR; Golbabaei F; Dehghan SF; Rafieepour A; Mortezapour AR; Asghari M
    Ind Health; 2017 Oct; 55(5):437-443. PubMed ID: 28804096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between OSHA-NIOSH Heat Safety Tool app and WBGT monitor to assess heat stress risk in agriculture.
    Dillane D; Balanay JAG
    J Occup Environ Hyg; 2020 Apr; 17(4):181-192. PubMed ID: 32105559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-temporal patterns of the minimum rest time for outdoor workers exposed to summer heat stress in South Korea.
    Lee SW; Kim IG; Kim HM; Lee DG; Lee HC; Choi G
    Int J Biometeorol; 2020 Oct; 64(10):1755-1765. PubMed ID: 32588145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations in Athlete Heat-Loss Potential Between Hot-Dry and Warm-Humid Environments at Equivalent Wet-Bulb Globe Temperature Thresholds.
    Vanos JK; Grundstein AJ
    J Athl Train; 2020 Nov; 55(11):1190-1198. PubMed ID: 33112954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambient heat stress and urolithiasis attacks in China: Implication for climate change.
    Zhou L; Chen R; He C; Liu C; Lei J; Zhu Y; Gao Y; Kan H; Xuan J
    Environ Res; 2023 Jan; 217():114850. PubMed ID: 36427640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.