BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30798499)

  • 1. Photochemical removal of acetaldehyde using 172 nm vacuum ultraviolet excimer lamp in N
    Tsuji M; Miyano M; Kamo N; Kawahara T; Uto K; Hayashi JI; Tsuji T
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11314-11325. PubMed ID: 30798499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient removal of benzene in air at atmospheric pressure using a side-on type 172 nm Xe
    Tsuji M; Kawahara T; Uto K; Kamo N; Miyano M; Hayashi JI; Tsuji T
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18980-18989. PubMed ID: 29721790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of vacuum ultraviolet irradiation to oxidize SO₂ and NOx for simultaneous desulfurization and denitrification.
    Ye J; Shang J; Li Q; Xu W; Liu J; Feng X; Zhu T
    J Hazard Mater; 2014 Apr; 271():89-97. PubMed ID: 24632363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous determination of HCHO, CH3CHO and O(x) in ambient air by hydrazine reagent and hplc.
    Possanzini M; Di Palo V
    Ann Chim; 2003; 93(1-2):149-56. PubMed ID: 12650583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical removal of NO(2) by using 172-nm Xe(2) excimer lamp in N(2) or air at atmospheric pressure.
    Tsuji M; Kawahara M; Noda K; Senda M; Sako H; Kamo N; Kawahara T; Kamarudin KS
    J Hazard Mater; 2009 Mar; 162(2-3):1025-33. PubMed ID: 18614279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved vacuum-UV (VUV)-initiated photomineralization of organic compounds in water with a xenon excimer flow-through photoreactor (Xe2* lamp, 172 nm) containing an axially centered ceramic oxygenator.
    Oppenländer T; Walddörfer C; Burgbacher J; Kiermeier M; Lachner K; Weinschrott H
    Chemosphere; 2005 Jul; 60(3):302-9. PubMed ID: 15924948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: role of the adsorption process.
    Klett C; Duten X; Tieng S; Touchard S; Jestin P; Hassouni K; Vega-González A
    J Hazard Mater; 2014 Aug; 279():356-64. PubMed ID: 25072139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of organic gases using ultrasonic mist generated from TiO2 suspension.
    Sekiguchi K; Noshiroya D; Handa M; Yamamoto K; Sakamoto K; Namiki N
    Chemosphere; 2010 Sep; 81(1):33-8. PubMed ID: 20705323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N2O removal in N2 or air by ArF excimer laser photolysis at atmospheric pressure.
    Tsuji M; Kumagae J; Tsuji T; Hamagami T
    J Hazard Mater; 2004 May; 108(3):189-97. PubMed ID: 15120872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Enhanced Photocatalytic NO Removal and Inhibited Peroxyacetyl Nitrate Formation in Synergistic Acetaldehyde Degradation.
    Xue T; Chen L; Li K; Lei B; Wang H; Dong F; Yang Y
    Environ Sci Technol; 2023 May; 57(21):8174-8182. PubMed ID: 37199463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an automated measurement system using a diffusion scrubber and high-performance liquid chromatography for the monitoring of formaldehyde and acetaldehyde in automotive exhaust gas.
    Komazaki Y; Narita Y; Tanaka S
    Analyst; 1998 Nov; 123(11):2343-9. PubMed ID: 10396812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VUV photolysis of naphthalene in indoor air: Intermediates, pathways, and health risk.
    Zhao W; Yang Y; Dai J; Liu F; Wang Y
    Chemosphere; 2013 May; 91(7):1002-8. PubMed ID: 23461839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of gaseous volatile organic compounds via vacuum ultraviolet photodegradation: Review and prospect.
    Sun X; Li C; Yu B; Wang J; Wang W
    J Environ Sci (China); 2023 Mar; 125():427-442. PubMed ID: 36375926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Study of an Ultraviolet Radiation Technique for Removal of the Indoor Air Volatile Organic Compounds and Bioaerosol.
    Liu CY; Tseng CH; Wang HC; Dai CF; Shih YH
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31319616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of N-nitrosamines and 1,4-dioxane using vacuum ultraviolet irradiation (UV
    Fujioka T; Kodamatani H; Minh Tran HD; Fujioka A; Hino K; Yoshikawa T; Inoue D; Ikehata K
    Chemosphere; 2021 Sep; 278():130326. PubMed ID: 33836400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of CH2OO reactions with SO2, NO2, NO, H2O and CH3CHO as a function of pressure.
    Stone D; Blitz M; Daubney L; Howes NU; Seakins P
    Phys Chem Chem Phys; 2014 Jan; 16(3):1139-49. PubMed ID: 24287566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photolytic degradation of organic azo dye in aqueous solution using Xe-excimer lamp.
    Feng X; Zhu S; Hou H
    Environ Technol; 2006 Feb; 27(2):119-26. PubMed ID: 16506507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV photofragmentation dynamics of acetaldehyde cations prepared by single-photon VUV ionization.
    Kapnas KM; McCaslin LM; Murray C
    Phys Chem Chem Phys; 2019 Jul; 21(26):14214-14225. PubMed ID: 30534766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemical oxidation of As(III) by vacuum-UV lamp irradiation.
    Yoon SH; Lee JH; Oh S; Yang JE
    Water Res; 2008 Jul; 42(13):3455-63. PubMed ID: 18514252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous removal of NO and SO
    Liu Y; Wang Y; Wang Q; Pan J; Zhang J
    Chemosphere; 2018 Jan; 190():431-441. PubMed ID: 29024887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.