These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30798603)

  • 1. Electrostatics and Interactions of an Ionizable Silica Nanoparticle Approaching a Plasma Membrane.
    Sachar HS; Sivasankar VS; Das S
    Langmuir; 2019 Mar; 35(11):4171-4181. PubMed ID: 30798603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of gold and silica nanoparticles with plasma membranes get distinguished by the van der Waals forces: Implications for drug delivery, imaging, and theranostics.
    Jing H; Sinha S; Sachar HS; Das S
    Colloids Surf B Biointerfaces; 2019 May; 177():433-439. PubMed ID: 30798064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric double layer electrostatics of lipid-bilayer-encapsulated nanoparticles: Toward a better understanding of protocell electrostatics.
    Jing H; Das S
    Electrophoresis; 2018 Mar; 39(5-6):752-759. PubMed ID: 29235657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Surface and Salt Properties on the Ion Distribution around Spherical Nanoparticles: Monte Carlo Simulations.
    Clavier A; Carnal F; Stoll S
    J Phys Chem B; 2016 Aug; 120(32):7988-97. PubMed ID: 27459187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics studies of aqueous silica nanoparticle dispersions: salt effects on the double layer formation.
    de Lara LS; Rigo VA; Michelon MF; Metin CO; Nguyen QP; Miranda CR
    J Phys Condens Matter; 2015 Aug; 27(32):325101. PubMed ID: 26194994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the influence of cell surface polysaccharides on nanodendrimer binding to Gram-negative and Gram-positive bacteria using single-nanoparticle force spectroscopy.
    Beaussart A; Beloin C; Ghigo JM; Chapot-Chartier MP; Kulakauskas S; Duval JFL
    Nanoscale; 2018 Jul; 10(26):12743-12753. PubMed ID: 29946619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption Behavior of Low-Concentration Imidazolium-Based Ionic Liquid Surfactant on Silica Nanoparticles.
    Liu Y; Qiao L; Xiang Y; Guo R
    Langmuir; 2016 Mar; 32(11):2582-90. PubMed ID: 26923264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells.
    Baghirov H; Melikishvili S; Mørch Y; Sulheim E; Åslund AKO; Hianik T; de Lange Davies C
    Colloids Surf B Biointerfaces; 2017 Feb; 150():373-383. PubMed ID: 27842930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatic Cellular Distribution of Silica Nanoparticles by Surface Energy Modification.
    Lee AR; Nam K; Lee BJ; Lee SW; Baek SM; Bang JS; Choi SK; Park SJ; Kim TH; Jeong KS; Lee DY; Park JK
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31387201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise manipulation of biophysical particle parameters enables control of proinflammatory cytokine production in presence of TLR 3 and 4 ligands.
    Kakizawa Y; Lee JS; Bell B; Fahmy TM
    Acta Biomater; 2017 Jul; 57():136-145. PubMed ID: 28069499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charged Nanoparticle Attraction in Multivalent Salt Solution: A Classical-Fluids Density Functional Theory and Molecular Dynamics Study.
    Salerno KM; Frischknecht AL; Stevens MJ
    J Phys Chem B; 2016 Jul; 120(26):5927-37. PubMed ID: 27057763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles.
    Manshian BB; Pfeiffer C; Pelaz B; Heimerl T; Gallego M; Möller M; del Pino P; Himmelreich U; Parak WJ; Soenen SJ
    ACS Nano; 2015 Oct; 9(10):10431-44. PubMed ID: 26327399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modified Poisson-Boltzmann model including charge regulation for the adsorption of ionizable polyelectrolytes to charged interfaces, applied to lysozyme adsorption on silica.
    Biesheuvel PM; van der Veen M; Norde W
    J Phys Chem B; 2005 Mar; 109(9):4172-80. PubMed ID: 16851479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the surface charge evolution of spherical nanoparticles by considering dielectric discontinuity effects at the solid/electrolyte solution interface.
    Seijo M; Ulrich S; Filella M; Buffle J; Stoll S
    J Colloid Interface Sci; 2008 Jun; 322(2):660-8. PubMed ID: 18387618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.
    Xiao X; Montaño GA; Edwards TL; Allen A; Achyuthan KE; Polsky R; Wheeler DR; Brozik SM
    Langmuir; 2012 Dec; 28(50):17396-403. PubMed ID: 23163515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatically driven adsorption of silica nanoparticles on functionalized surfaces.
    Li X; Niitsoo O; Couzis A
    J Colloid Interface Sci; 2013 Mar; 394():26-35. PubMed ID: 23317769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.
    Park YC; Paulsen J; Nap RJ; Whitaker RD; Mathiyazhagan V; Song YQ; Hürlimann M; Szleifer I; Wong JY
    Langmuir; 2014 Jan; 30(3):784-92. PubMed ID: 24393031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of electrostatic interaction in proteins.
    Nakamura H
    Q Rev Biophys; 1996 Feb; 29(1):1-90. PubMed ID: 8783394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-penetrating peptide together with PEG-modified mesostructured silica nanoparticles promotes mucous permeation and oral delivery of therapeutic proteins and peptides.
    Tan X; Zhang Y; Wang Q; Ren T; Gou J; Guo W; Yin T; He H; Zhang Y; Tang X
    Biomater Sci; 2019 Jun; 7(7):2934-2950. PubMed ID: 31094367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.