BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30798804)

  • 1. Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions.
    Palmieri F; Estoppey A; House GL; Lohberger A; Bindschedler S; Chain PSG; Junier P
    Adv Appl Microbiol; 2019; 106():49-77. PubMed ID: 30798804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of oxalic acid in fungal and bacterial metabolism and its biotechnological potential.
    Grąz M
    World J Microbiol Biotechnol; 2024 Apr; 40(6):178. PubMed ID: 38662173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes.
    Gadd GM
    Adv Microb Physiol; 1999; 41():47-92. PubMed ID: 10500844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas?
    Rudnick MB; van Veen JA; de Boer W
    Environ Microbiol Rep; 2015 Oct; 7(5):709-14. PubMed ID: 25858310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxalate in Plants: Metabolism, Function, Regulation, and Application.
    Li P; Liu C; Luo Y; Shi H; Li Q; PinChu C; Li X; Yang J; Fan W
    J Agric Food Chem; 2022 Dec; 70(51):16037-16049. PubMed ID: 36511327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of oxalate metabolism in plants for improving food quality and productivity.
    Kumar V; Irfan M; Datta A
    Phytochemistry; 2019 Feb; 158():103-109. PubMed ID: 30500595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.
    Yadav S; Srivastava AK; Singh DP; Arora DK
    World J Microbiol Biotechnol; 2012 Nov; 28(11):3197-206. PubMed ID: 22864600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxalic acid degradation in wood-rotting fungi. Searching for a new source of oxalate oxidase.
    Grąz M; Ruminowicz-Stefaniuk M; Jarosz-Wilkołazka A
    World J Microbiol Biotechnol; 2022 Nov; 39(1):13. PubMed ID: 36380124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pathogenic white-rot fungus Heterobasidion parviporum responds to spruce xylem defense by enhanced production of oxalic acid.
    Nagy NE; Kvaalen H; Fongen M; Fossdal CG; Clarke N; Solheim H; Hietala AM
    Mol Plant Microbe Interact; 2012 Nov; 25(11):1450-8. PubMed ID: 23035954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of elevated CO₂ and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants.
    Lee SH; Kim SY; Ding W; Kang H
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5295-305. PubMed ID: 25605423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungi.
    Mäkelä MR; Hildén K; Lundell TK
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):801-14. PubMed ID: 20464388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria.
    Salazar-Cerezo S; Martínez-Montiel N; García-Sánchez J; Pérez-Y-Terrón R; Martínez-Contreras RD
    Microbiol Res; 2018 Mar; 208():85-98. PubMed ID: 29551215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis.
    Heller A; Witt-Geiges T
    PLoS One; 2013; 8(8):e72292. PubMed ID: 23951305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of oxalic acid by some fungi infected tubers.
    Faboya O; Ikotun T; Fatoki OS
    Z Allg Mikrobiol; 1983; 23(10):621-4. PubMed ID: 6670294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of oxalotrophic bacteria from tropical soils.
    Bravo D; Braissant O; Cailleau G; Verrecchia E; Junier P
    Arch Microbiol; 2015 Jan; 197(1):65-77. PubMed ID: 25381572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.
    Martin G; Guggiari M; Bravo D; Zopfi J; Cailleau G; Aragno M; Job D; Verrecchia E; Junier P
    Environ Microbiol; 2012 Nov; 14(11):2960-70. PubMed ID: 22928486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxalic acid: a microbial metabolite of interest for the pulping industry.
    Meyer-Pinson V; Ruel K; Gaudard F; Valtat G; Petit-Conil M; Kurek B
    C R Biol; 2004; 327(9-10):917-25. PubMed ID: 15587083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration.
    Sun S; Li S; Avera BN; Strahm BD; Badgley BD
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28476769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of reactive dyes by ozonation and oxalic acid-assimilating bacteria isolated from soil.
    Kurosumi A; Kaneko E; Nakamura Y
    Biodegradation; 2008 Jul; 19(4):489-94. PubMed ID: 17926132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Living in a fungal world: impact of fungi on soil bacterial niche development.
    Boer Wd; Folman LB; Summerbell RC; Boddy L
    FEMS Microbiol Rev; 2005 Sep; 29(4):795-811. PubMed ID: 16102603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.