These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3079906)

  • 1. Small heat shock proteins of Drosophila associate with the cytoskeleton.
    Leicht BG; Biessmann H; Palter KB; Bonner JJ
    Proc Natl Acad Sci U S A; 1986 Jan; 83(1):90-4. PubMed ID: 3079906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock causes the collapse of the intermediate filament cytoskeleton in Drosophila embryos.
    Walter MF; Petersen NS; Biessmann H
    Dev Genet; 1990; 11(4):270-9. PubMed ID: 2090374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Drosophila melanogaster proteins related to intermediate filament proteins of vertebrate cells.
    Falkner FG; Saumweber H; Biessmann H
    J Cell Biol; 1981 Oct; 91(1):175-83. PubMed ID: 6795212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunofluorescence localization of a small heat shock protein (hsp 23) in salivary gland cells of Drosophila melanogaster.
    Arrigo AP; Ahmad-Zadeh C
    Mol Gen Genet; 1981; 184(1):73-9. PubMed ID: 6801431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic state of heat shock proteins in chicken embryo fibroblasts.
    Collier NC; Schlesinger MJ
    J Cell Biol; 1986 Oct; 103(4):1495-507. PubMed ID: 3533955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-filamentous configuration of intermediate-sized filament proteins in Drosophila Kc tissue culture cells.
    Walter MF; Biessmann H
    In Vitro Cell Dev Biol; 1987 Jun; 23(6):453-8. PubMed ID: 3110128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the thermotolerant cell. II. Effects on the intracellular distribution of heat-shock protein 70, intermediate filaments, and small nuclear ribonucleoprotein complexes.
    Welch WJ; Mizzen LA
    J Cell Biol; 1988 Apr; 106(4):1117-30. PubMed ID: 2966179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A major heat-shock protein defined by a monoclonal antibody.
    LaThangue NB
    EMBO J; 1984 Aug; 3(8):1871-9. PubMed ID: 6541125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prosomes and heat shock complexes in Drosophila melanogaster cells.
    de Sa CM; Rollet E; de Sa MF; Tanguay RM; Best-Belpomme M; Scherrer K
    Mol Cell Biol; 1989 Jun; 9(6):2672-81. PubMed ID: 2503709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat-shock proteins of Drosophila are associated with nuclease-resistant, high-salt-resistant nuclear structures.
    Levinger L; Varshavsky A
    J Cell Biol; 1981 Sep; 90(3):793-6. PubMed ID: 6793602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery.
    Velazquez JM; Lindquist S
    Cell; 1984 Mar; 36(3):655-62. PubMed ID: 6421488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The small heat shock protein Hsp22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization.
    Morrow G; Inaguma Y; Kato K; Tanguay RM
    J Biol Chem; 2000 Oct; 275(40):31204-10. PubMed ID: 10896659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the resistance to heat and hydrogen peroxide stresses in COS cells transiently expressing wild type or deletion mutants of the Drosophila 27-kDa heat-shock protein.
    Mehlen P; Briolay J; Smith L; Diaz-latoud C; Fabre N; Pauli D; Arrigo AP
    Eur J Biochem; 1993 Jul; 215(2):277-84. PubMed ID: 8344296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular localization of Drosophila 83-kilodalton heat shock protein in normal, heat-shocked, and recovering cultured cells with a specific antibody.
    Carbajal ME; Duband JL; Lettre F; Valet JP; Tanguay RM
    Biochem Cell Biol; 1986 Aug; 64(8):816-25. PubMed ID: 2429681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock protein synthesis and cytoskeletal rearrangements occur independently of intracellular free calcium increases in Drosophila cells and tissues.
    Drummond IA; Livingstone D; Steinhardt RA
    Radiat Res; 1988 Mar; 113(3):402-13. PubMed ID: 3126536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on a possible relationship between alterations in the cytoskeleton and induction of heat shock protein synthesis in mammalian cells.
    van Bergen en Henegouwen PM; Jordi WJ; van Dongen G; Ramaekers FC; Amesz H; Linnemans WA
    Int J Hyperthermia; 1985; 1(1):69-83. PubMed ID: 2426373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress protein systems of mammalian cells.
    Subjeck JR; Shyy TT
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C1-17. PubMed ID: 3510555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excess protein in nuclei isolated from heat-shocked cells results from a reduced extractability of nuclear proteins.
    Borrelli MJ; Lepock JR; Frey HE; Lee YJ; Corry PM
    J Cell Physiol; 1996 Jun; 167(3):369-79. PubMed ID: 8655591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of cytoplasmic 19 S ring-type particles in Drosophila which contain hsp 23 at normal growth temperature.
    Schuldt C; Kloetzel PM
    Dev Biol; 1985 Jul; 110(1):65-74. PubMed ID: 2408945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The expression of different intermediate-sized filaments in human salivary glands and their tumours.
    Caselitz J; Osborn M; Wustrow J; Seifert G; Weber K
    Pathol Res Pract; 1982; 175(2-3):266-78. PubMed ID: 6190149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.