These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3079906)

  • 61. The origin of folded DNA rings from Drosophila melanogaster.
    Hutton JR; Thomas CA
    J Mol Biol; 1975 Oct; 98(2):. PubMed ID: 811808
    [No Abstract]   [Full Text] [Related]  

  • 62. Heat-inducible proteins that react with antibodies to chaperonin60 are localized in the nucleus of a fish cell line.
    Sanders BM; Nguyen J; Douglass TG; Miller S
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):21-5. PubMed ID: 7506532
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Heat shock response and thermal resistance in cultured human retinal pigment epithelium.
    Wakakura M; Foulds WS
    Exp Eye Res; 1993 Jan; 56(1):17-24. PubMed ID: 7679354
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A comparison of the multiple Drosophila heat shock proteins in cell lines and larval salivary glands by two-dimensional gel electrophoresis.
    Buzin CH; Petersen NS
    J Mol Biol; 1982 Jun; 158(2):181-201. PubMed ID: 6811757
    [No Abstract]   [Full Text] [Related]  

  • 65. The monovalent ionophore monensin maintains the nuclear localization of the human stress protein hsp28 during heat shock recovery.
    Arrigo AP
    J Cell Sci; 1990 Jul; 96 ( Pt 3)():419-27. PubMed ID: 2229194
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characterization of the prosome from Drosophila and its similarity to the cytoplasmic structures formed by the low molecular weight heat-shock proteins.
    Arrigo AP; Darlix JL; Khandjian EW; Simon M; Spahr PF
    EMBO J; 1985 Feb; 4(2):399-406. PubMed ID: 2410257
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Monoclonal antibodies against a nuclear membrane protein of Drosophila. Localization by indirect immunofluorescence and detection of antigen using a new protein blotting procedure.
    Risau W; Saumweber H; Symmons P
    Exp Cell Res; 1981 May; 133(1):47-54. PubMed ID: 6786899
    [No Abstract]   [Full Text] [Related]  

  • 68. Large-scale isolation and fractionation of organs of Drosophila melanogaster larvae.
    Zweidler A; Cohen LH
    J Cell Biol; 1971 Oct; 51(1):240-8. PubMed ID: 5000070
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Localization and quantitation of hsp84 in mammalian cells.
    Berbers GA; Kunnen R; van Bergen en Henegouwen PM; van Wijk R
    Exp Cell Res; 1988 Aug; 177(2):257-71. PubMed ID: 3292274
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Small RNAs from Drosophila KC-H cells. Characterization of nuclear and cytoplasmic 7S subspecies.
    Ireland LS; Krause MO
    Exp Cell Res; 1983 Aug; 147(1):143-54. PubMed ID: 6193976
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Intermediate-filament expression in ocular tissue.
    Pitz S; Moll R
    Prog Retin Eye Res; 2002 Mar; 21(2):241-62. PubMed ID: 12062536
    [TBL] [Abstract][Full Text] [Related]  

  • 72. DNA replication in salivary gland nuclei of Drosophila melanogaster at successive larval and prepupal stages.
    Rodman TC
    Genetics; 1967 Mar; 55(3):375-86. PubMed ID: 4166876
    [No Abstract]   [Full Text] [Related]  

  • 73. Heat-shock proteins are associated with hnRNA in Drosophila melanogaster tissue culture cells.
    Kloetzel PM; Bautz EK
    EMBO J; 1983; 2(5):705-10. PubMed ID: 16453451
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular Responses to Thermal and Osmotic Stress in Arctic Intertidal Mussels (
    Barrett NJ; Thyrring J; Harper EM; Sejr MK; Sørensen JG; Peck LS; Clark MS
    Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052494
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Maternal loading of a small heat shock protein increases embryo thermal tolerance in
    Lockwood BL; Julick CR; Montooth KL
    J Exp Biol; 2017 Dec; 220(Pt 23):4492-4501. PubMed ID: 29097593
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Tissue-specific targeting of Hsp26 has no effect on heat resistance of neural function in larval Drosophila.
    Mileva-Seitz V; Xiao C; Seroude L; Robertson RM
    Cell Stress Chaperones; 2008; 13(1):85-95. PubMed ID: 18347945
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cytoplasmic distribution of heat shock proteins in soybean.
    Mansfield MA; Key JL
    Plant Physiol; 1988 Apr; 86(4):1240-6. PubMed ID: 16666061
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Heat Shock Disrupts Cap and Poly(A) Tail Function during Translation and Increases mRNA Stability of Introduced Reporter mRNA.
    Gallie DR; Caldwell C; Pitto L
    Plant Physiol; 1995 Aug; 108(4):1703-1713. PubMed ID: 12228574
    [TBL] [Abstract][Full Text] [Related]  

  • 79. RNase Activity Decreases following a Heat Shock in Wheat Leaves and Correlates with Its Posttranslational Modification.
    Chang SC; Gallie DR
    Plant Physiol; 1997 Apr; 113(4):1253-1263. PubMed ID: 12223673
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Translational control of cellular and viral mRNAs.
    Gallie DR
    Plant Mol Biol; 1996 Oct; 32(1-2):145-58. PubMed ID: 8980478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.