These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30799483)

  • 1. SuperCT: a supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles.
    Xie P; Gao M; Wang C; Zhang J; Noel P; Yang C; Von Hoff D; Han H; Zhang MQ; Lin W
    Nucleic Acids Res; 2019 May; 47(8):e48. PubMed ID: 30799483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of SuperCT for Enhanced Characterization of Single-Cell Transcriptomic Profiles.
    Zhong J; Lin W
    Methods Mol Biol; 2020; 2117():169-177. PubMed ID: 31960378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation.
    Chen L; Zhai Y; He Q; Wang W; Deng M
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges in unsupervised clustering of single-cell RNA-seq data.
    Kiselev VY; Andrews TS; Hemberg M
    Nat Rev Genet; 2019 May; 20(5):273-282. PubMed ID: 30617341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of differentially abundant cell subpopulations in scRNA-seq data.
    Zhao J; Jaffe A; Li H; Lindenbaum O; Sefik E; Jackson R; Cheng X; Flavell RA; Kluger Y
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34001664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAME-clustering: Single-cell Aggregated Clustering via Mixture Model Ensemble.
    Huh R; Yang Y; Jiang Y; Shen Y; Li Y
    Nucleic Acids Res; 2020 Jan; 48(1):86-95. PubMed ID: 31777938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies.
    Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W
    Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SC3: consensus clustering of single-cell RNA-seq data.
    Kiselev VY; Kirschner K; Schaub MT; Andrews T; Yiu A; Chandra T; Natarajan KN; Reik W; Barahona M; Green AR; Hemberg M
    Nat Methods; 2017 May; 14(5):483-486. PubMed ID: 28346451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data.
    Zeng P; Lin Z
    PLoS Comput Biol; 2021 Jun; 17(6):e1009064. PubMed ID: 34077420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RCA2: a scalable supervised clustering algorithm that reduces batch effects in scRNA-seq data.
    Schmidt F; Ranjan B; Lin QXX; Krishnan V; Joanito I; Honardoost MA; Nawaz Z; Venkatesh PN; Tan J; Rayan NA; Ong ST; Prabhakar S
    Nucleic Acids Res; 2021 Sep; 49(15):8505-8519. PubMed ID: 34320202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CHETAH: a selective, hierarchical cell type identification method for single-cell RNA sequencing.
    de Kanter JK; Lijnzaad P; Candelli T; Margaritis T; Holstege FCP
    Nucleic Acids Res; 2019 Sep; 47(16):e95. PubMed ID: 31226206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CaSTLe - Classification of single cells by transfer learning: Harnessing the power of publicly available single cell RNA sequencing experiments to annotate new experiments.
    Lieberman Y; Rokach L; Shay T
    PLoS One; 2018; 13(10):e0205499. PubMed ID: 30304022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Cell Types from Single-Cell Transcriptomic Data.
    Shekhar K; Menon V
    Methods Mol Biol; 2019; 1935():45-77. PubMed ID: 30758819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using BRIE to Detect and Analyze Splicing Isoforms in scRNA-Seq Data.
    Huang Y; Sanguinetti G
    Methods Mol Biol; 2019; 1935():175-185. PubMed ID: 30758827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.