BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 30799575)

  • 1. High Acceleration Three-Dimensional T1-Weighted Dual Echo Dixon Hepatobiliary Phase Imaging Using Compressed Sensing-Sensitivity Encoding: Comparison of Image Quality and Solid Lesion Detectability with the Standard T1-Weighted Sequence.
    Nam JG; Lee JM; Lee SM; Kang HJ; Lee ES; Hur BY; Yoon JH; Kim E; Doneva M
    Korean J Radiol; 2019 Mar; 20(3):438-448. PubMed ID: 30799575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fat-suppressed, three-dimensional T1-weighted imaging using high-acceleration parallel acquisition and a dual-echo Dixon technique for gadoxetic acid-enhanced liver MRI at 3 T.
    Yoon JH; Lee JM; Yu MH; Kim EJ; Han JK; Choi BI
    Acta Radiol; 2015 Dec; 56(12):1454-62. PubMed ID: 25480475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Navigated three-dimensional T1-weighted gradient-echo sequence for gadoxetic acid liver magnetic resonance imaging in patients with limited breath-holding capacity.
    Yoon JH; Lee JM; Lee ES; Baek J; Lee S; Iwadate Y; Han JK; Choi BI
    Abdom Imaging; 2015 Feb; 40(2):278-88. PubMed ID: 25112454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High spatial resolution, respiratory-gated, t1-weighted magnetic resonance imaging of the liver and the biliary tract during the hepatobiliary phase of gadoxetic Acid-enhanced magnetic resonance imaging.
    Lee ES; Lee JM; Yu MH; Shin CI; Woo HS; Joo I; Stemmer A; Han JK; Choi BI
    J Comput Assist Tomogr; 2014; 38(3):360-6. PubMed ID: 24681858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gadoxetic acid-enhanced fat suppressed three-dimensional T1-weighted MRI using a multiecho dixon technique at 3 tesla: emphasis on image quality and hepatocellular carcinoma detection.
    Lee MH; Kim YK; Park MJ; Hwang J; Kim SH; Lee WJ; Choi D
    J Magn Reson Imaging; 2013 Aug; 38(2):401-10. PubMed ID: 23292998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatobiliary phase imaging in cirrhotic patients using compressed sensing and controlled aliasing in parallel imaging results in higher acceleration.
    Yoon S; Shim YS; Park SH; Sung J; Nickel MD; Kim YJ; Lee HY; Kim HJ
    Eur Radiol; 2024 Apr; 34(4):2233-2243. PubMed ID: 37731096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of T1-weighted in- and out-of-phase single shot magnetization-prepared gradient-recalled-echo with three-dimensional gradient-recalled-echo at 3.0 Tesla: preliminary observations in abdominal studies.
    Ferreira A; Ramalho M; de Campos RO; Heredia V; Azevedo RM; Dale B; Semelka RC
    J Magn Reson Imaging; 2012 May; 35(5):1187-95. PubMed ID: 22128047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical application of controlled aliasing in parallel imaging results in a higher acceleration (CAIPIRINHA)-volumetric interpolated breathhold (VIBE) sequence for gadoxetic acid-enhanced liver MR imaging.
    Yu MH; Lee JM; Yoon JH; Kiefer B; Han JK; Choi BI
    J Magn Reson Imaging; 2013 Nov; 38(5):1020-6. PubMed ID: 23559147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breath-hold High-resolution T1-weighted Gradient Echo Liver MR Imaging with Compressed Sensing Obtained during the Gadoxetic Acid-enhanced Hepatobiliary Phase: Image Quality and Lesion Visibility Compared with a Standard T1-weighted Sequence.
    Ihara K; Onoda H; Tanabe M; Iida E; Ueda T; Kobayashi T; Higashi M; Nickel MD; Imai H; Ito K
    Magn Reson Med Sci; 2024 Apr; 23(2):146-152. PubMed ID: 36740257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrument visualization using conventional and compressed sensing SEMAC for interventional MRI at 3T.
    Sonnow L; Gilson WD; Raithel E; Nittka M; Wacker F; Fritz J
    J Magn Reson Imaging; 2018 May; 47(5):1306-1315. PubMed ID: 28940951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressed sensing for breath-hold high-resolution hepatobiliary phase imaging: image noise, artifact, biliary anatomy evaluation, and focal lesion detection in comparison with parallel imaging.
    Choi MH; Kim B; Han D; Lee YJ
    Abdom Radiol (NY); 2022 Jan; 47(1):133-142. PubMed ID: 34591152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-breath-hold thin-slice gadoxetic acid-enhanced hepatobiliary MR imaging using a newly developed three-dimensional fast spoiled gradient-echo sequence.
    Hori M; Kim T; Onishi H; Takei N; Wakayama T; Sakane M; Dia AA; Tsuboyama T; Nakamoto A; Tatsumi M; Tomiyama N
    Magn Reson Imaging; 2016 May; 34(4):545-51. PubMed ID: 26747408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations.
    Azevedo RM; de Campos RO; Ramalho M; Herédia V; Dale BM; Semelka RC
    AJR Am J Roentgenol; 2011 Sep; 197(3):650-7. PubMed ID: 21862807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution T1-weighted gradient echo imaging for liver MRI using parallel imaging at high-acceleration factors.
    Yoon JH; Lee JM; Yu MH; Kim EJ; Han JK; Choi BI
    Abdom Imaging; 2014 Aug; 39(4):711-21. PubMed ID: 24557640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Sensitivity Encoding (SENSE) and Compressed Sensing-SENSE for Contrast-Enhanced T1-Weighted Imaging in Patients With Crohn Disease Undergoing MR Enterography.
    Kim J; Seo N; Bae H; Kang EA; Kim E; Chung YE; Lim JS; Kim MJ
    AJR Am J Roentgenol; 2022 Apr; 218(4):678-686. PubMed ID: 34730384
    [No Abstract]   [Full Text] [Related]  

  • 16. Compressed Sensing for Breast MRI: Resolving the Trade-Off Between Spatial and Temporal Resolution.
    Vreemann S; Rodriguez-Ruiz A; Nickel D; Heacock L; Appelman L; van Zelst J; Karssemeijer N; Weiland E; Maas M; Moy L; Kiefer B; Mann RM
    Invest Radiol; 2017 Oct; 52(10):574-582. PubMed ID: 28463932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shortened breath-hold contrast-enhanced MRI of the liver using a new parallel imaging technique, CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration): a comparison with conventional GRAPPA technique.
    Ogawa M; Kawai T; Kan H; Kobayashi S; Akagawa Y; Suzuki K; Nojiri S; Ozawa Y; Shibamoto Y
    Abdom Imaging; 2015 Oct; 40(8):3091-8. PubMed ID: 26099474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressed Sensing-Sensitivity Encoding (CS-SENSE) Accelerated Brain Imaging: Reduced Scan Time without Reduced Image Quality.
    Vranic JE; Cross NM; Wang Y; Hippe DS; de Weerdt E; Mossa-Basha M
    AJNR Am J Neuroradiol; 2019 Jan; 40(1):92-98. PubMed ID: 30523142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image quality of the CAIPIRINHA-Dixon-TWIST-VIBE technique for ultra-fast breast DCE-MRI: Comparison with the conventional GRE technique.
    Hao W; Peng W; Wang C; Zhao B; Wang G
    Eur J Radiol; 2020 Aug; 129():109108. PubMed ID: 32563961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gadoxetic acid-enhanced dynamic magnetic resonance imaging using optimized integrated combination of compressed sensing and parallel imaging technique.
    Kawai N; Goshima S; Noda Y; Kajita K; Kawada H; Tanahashi Y; Nagata S; Matsuo M
    Magn Reson Imaging; 2019 Apr; 57():111-117. PubMed ID: 30439516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.