BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30799580)

  • 1. High-Resolution Magnetic Resonance Imaging Using Compressed Sensing for Intracranial and Extracranial Arteries: Comparison with Conventional Parallel Imaging.
    Suh CH; Jung SC; Lee HB; Cho SJ
    Korean J Radiol; 2019 Mar; 20(3):487-497. PubMed ID: 30799580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrast-Enhanced High-Resolution Intracranial Vessel Wall MRI with Compressed Sensing: Comparison with Conventional T1 Volumetric Isotropic Turbo Spin Echo Acquisition Sequence.
    Park CJ; Cha J; Ahn SS; Choi HS; Kim YD; Nam HS; Heo JH; Lee SK
    Korean J Radiol; 2020 Dec; 21(12):1334-1344. PubMed ID: 32767865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution magnetic resonance imaging of intracranial vessel walls: Comparison of 3D T1-weighted turbo spin echo with or without DANTE or iMSDE.
    Cho SJ; Jung SC; Suh CH; Lee JB; Kim D
    PLoS One; 2019; 14(8):e0220603. PubMed ID: 31386679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Acceleration Three-Dimensional T1-Weighted Dual Echo Dixon Hepatobiliary Phase Imaging Using Compressed Sensing-Sensitivity Encoding: Comparison of Image Quality and Solid Lesion Detectability with the Standard T1-Weighted Sequence.
    Nam JG; Lee JM; Lee SM; Kang HJ; Lee ES; Hur BY; Yoon JH; Kim E; Doneva M
    Korean J Radiol; 2019 Mar; 20(3):438-448. PubMed ID: 30799575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Intracranial Vessel Imaging With Non-Cartesian Spiral 3-Dimensional Time-of-Flight Magnetic Resonance Angiography at 1.5 T: An In Vitro and Clinical Study in Healthy Volunteers.
    Sartoretti T; van Smoorenburg L; Sartoretti E; Schwenk Á; Binkert CA; Kulcsár Z; Becker AS; Graf N; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 May; 55(5):293-303. PubMed ID: 31895223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of Artificial Intelligence Constrained Compressed SENSE Accelerated 3D Isotropic T1 VISTA Sequence For Vessel Wall MR Imaging: Exploring the Potential of Higher Acceleration Factors Compared to Traditional Compressed SENSE.
    Ma Y; Wang M; Qiao Y; Wen Y; Zhu Y; Jiang K; Lian J; Tong D
    Acad Radiol; 2024 Apr; ():. PubMed ID: 38664146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the Compressed Sensing Technique for Lumbar Vertebrae Imaging: Comparison with Conventional Parallel Imaging.
    Gao T; Lu Z; Wang F; Zhao H; Wang J; Pan S
    Curr Med Imaging; 2021; 17(8):1010-1017. PubMed ID: 33573574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution MRI using compressed sensing-sensitivity encoding (CS-SENSE) for patients with suspected neurovascular compression syndrome: comparison with the conventional SENSE parallel acquisition technique.
    Cho SJ; Choi YJ; Chung SR; Lee JH; Baek JH
    Clin Radiol; 2019 Oct; 74(10):817.e9-817.e14. PubMed ID: 31362886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressed Sensing-Sensitivity Encoding (CS-SENSE) Accelerated Brain Imaging: Reduced Scan Time without Reduced Image Quality.
    Vranic JE; Cross NM; Wang Y; Hippe DS; de Weerdt E; Mossa-Basha M
    AJNR Am J Neuroradiol; 2019 Jan; 40(1):92-98. PubMed ID: 30523142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast imaging of lenticulostriate arteries by high-resolution black-blood T1-weighted imaging with variable flip angles and acceleration by compressed sensitivity encoding.
    Zhang Y; Cao J; Qiao C; Gao B; Du W; Lin L; Liu N; Song Q; Miao Y
    Magn Reson Imaging; 2024 Jul; 110():51-56. PubMed ID: 38458551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences.
    Altahawi FF; Blount KJ; Morley NP; Raithel E; Omar IM
    Skeletal Radiol; 2017 Jan; 46(1):7-15. PubMed ID: 27744578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating anatomical 2D turbo spin echo imaging of the ankle using compressed sensing.
    Gersing AS; Bodden J; Neumann J; Diefenbach MN; Kronthaler S; Pfeiffer D; Knebel C; Baum T; Schwaiger BJ; Hock A; Rummeny EJ; Woertler K; Karampinos DC
    Eur J Radiol; 2019 Sep; 118():277-284. PubMed ID: 31301872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of three-dimensional MR neurography using an optimized combination of compressed sensing and parallel imaging.
    Aoike T; Fujima N; Yoneyama M; Fujiwara T; Takamori S; Aoike S; Ishizaka K; Kudo K
    Magn Reson Imaging; 2022 Apr; 87():32-37. PubMed ID: 34968698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved temporal resolution and acceleration on 4D-MR angiography based on superselective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK) using an interpolation algorithm on the temporal axis and compressed sensing-sensitivity encoding (CS-SENSE).
    Murazaki H; Wada T; Togao O; Obara M; Helle M; Kobayashi K; Ishigami K; Kato T
    Magn Reson Imaging; 2024 Jun; 109():1-9. PubMed ID: 38417470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid of Compressed Sensing and Parallel Imaging Applied to Three-dimensional Isotropic T
    Morita K; Nakaura T; Maruyama N; Iyama Y; Oda S; Utsunomiya D; Namimoto T; Kitajima M; Yoneyama M; Yamashita Y
    Magn Reson Med Sci; 2020 Feb; 19(1):48-55. PubMed ID: 30880300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressed Sensitivity Encoding Artificial Intelligence Accelerates Brain Metastasis Imaging by Optimizing Image Quality and Reducing Scan Time.
    Wang M; Ma Y; Li L; Pan X; Wen Y; Qiu Y; Guo D; Zhu Y; Lian J; Tong D
    AJNR Am J Neuroradiol; 2024 Apr; 45(4):444-452. PubMed ID: 38485196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressed Sensing SEMAC: 8-fold Accelerated High Resolution Metal Artifact Reduction MRI of Cobalt-Chromium Knee Arthroplasty Implants.
    Fritz J; Ahlawat S; Demehri S; Thawait GK; Raithel E; Gilson WD; Nittka M
    Invest Radiol; 2016 Oct; 51(10):666-76. PubMed ID: 27518214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing.
    Yoon JH; Yu MH; Chang W; Park JY; Nickel MD; Son Y; Kiefer B; Lee JM
    Invest Radiol; 2017 Oct; 52(10):596-604. PubMed ID: 28492418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning-based reconstruction approach for accelerated magnetic resonance image of the knee with compressed sense: evaluation in healthy volunteers.
    Iuga AI; Rauen PS; Siedek F; Große-Hokamp N; Sonnabend K; Maintz D; Lennartz S; Bratke G
    Br J Radiol; 2023 Jun; 96(1146):20220074. PubMed ID: 37086077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).
    Zhu C; Tian B; Chen L; Eisenmenger L; Raithel E; Forman C; Ahn S; Laub G; Liu Q; Lu J; Liu J; Hess C; Saloner D
    MAGMA; 2018 Jun; 31(3):457-467. PubMed ID: 29209856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.