These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 30799629)
1. Dietary polyphenols modulate starch digestion and glycaemic level: a review. Sun L; Miao M Crit Rev Food Sci Nutr; 2020; 60(4):541-555. PubMed ID: 30799629 [TBL] [Abstract][Full Text] [Related]
2. Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: a randomised, controlled, single-blind, cross-over intervention. Nyambe-Silavwe H; Williamson G Br J Nutr; 2016 Aug; 116(3):443-50. PubMed ID: 27278405 [TBL] [Abstract][Full Text] [Related]
3. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake. Li K; Yao F; Du J; Deng X; Li C J Agric Food Chem; 2018 Feb; 66(7):1629-1637. PubMed ID: 29388426 [TBL] [Abstract][Full Text] [Related]
4. Research on the Influences of Five Food-Borne Polyphenols on Ren S; Li K; Liu Z J Agric Food Chem; 2019 Aug; 67(31):8617-8625. PubMed ID: 31293160 [TBL] [Abstract][Full Text] [Related]
5. Interactions between corn starch and lingonberry polyphenols and their effects on starch digestion and glucose transport. Li F; Zhang X; Liu X; Zhang J; Zang D; Zhang X; Shao M Int J Biol Macromol; 2024 Jun; 271(Pt 2):132444. PubMed ID: 38797300 [TBL] [Abstract][Full Text] [Related]
6. Tea polyphenols as a strategy to control starch digestion in bread: the effects of polyphenol type and gluten. Kan L; Capuano E; Fogliano V; Oliviero T; Verkerk R Food Funct; 2020 Jul; 11(7):5933-5943. PubMed ID: 32567616 [TBL] [Abstract][Full Text] [Related]
7. Bound Polyphenols from Red Quinoa Prevailed over Free Polyphenols in Reducing Postprandial Blood Glucose Rises by Inhibiting α-Glucosidase Activity and Starch Digestion. Zhang Y; Bai B; Yan Y; Liang J; Guan X Nutrients; 2022 Feb; 14(4):. PubMed ID: 35215378 [TBL] [Abstract][Full Text] [Related]
8. Possible effects of dietary polyphenols on sugar absorption and digestion. Williamson G Mol Nutr Food Res; 2013 Jan; 57(1):48-57. PubMed ID: 23180627 [TBL] [Abstract][Full Text] [Related]
9. Concord and Niagara Grape Juice and Their Phenolics Modify Intestinal Glucose Transport in a Coupled in Vitro Digestion/Caco-2 Human Intestinal Model. Moser S; Lim J; Chegeni M; Wightman JD; Hamaker BR; Ferruzzi MG Nutrients; 2016 Jul; 8(7):. PubMed ID: 27399765 [TBL] [Abstract][Full Text] [Related]
10. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats. de la Garza AL; Etxeberria U; Lostao MP; San Román B; Barrenetxe J; Martínez JA; Milagro FI J Agric Food Chem; 2013 Dec; 61(49):12012-9. PubMed ID: 24261475 [TBL] [Abstract][Full Text] [Related]
11. The inhibitory effects of berry polyphenols on digestive enzymes. McDougall GJ; Stewart D Biofactors; 2005; 23(4):189-95. PubMed ID: 16498205 [TBL] [Abstract][Full Text] [Related]
12. Potato phenolics impact starch digestion and glucose transport in model systems but translation to phenolic rich potato chips results in only modest modification of glycemic response in humans. Moser S; Aragon I; Furrer A; Van Klinken JW; Kaczmarczyk M; Lee BH; George J; Hamaker BR; Mattes R; Ferruzzi MG Nutr Res; 2018 Apr; 52():57-70. PubMed ID: 29525611 [TBL] [Abstract][Full Text] [Related]
13. Bioactive Polyphenols from Southern Chile Seaweed as Inhibitors of Enzymes for Starch Digestion. Pacheco LV; Parada J; Pérez-Correa JR; Mariotti-Celis MS; Erpel F; Zambrano A; Palacios M Mar Drugs; 2020 Jul; 18(7):. PubMed ID: 32650394 [TBL] [Abstract][Full Text] [Related]
14. Inhibitory effect of hydro-methanolic extract of seed of Holarrhena antidysenterica on alpha-glucosidase activity and postprandial blood glucose level in normoglycemic rat. Ali KM; Chatterjee K; De D; Jana K; Bera TK; Ghosh D J Ethnopharmacol; 2011 Apr; 135(1):194-6. PubMed ID: 21385604 [TBL] [Abstract][Full Text] [Related]
15. Hibiscus acid as an inhibitor of starch digestion in the Caco-2 cell model system. Hansawasdi C; Kawabata J; Kasai T Biosci Biotechnol Biochem; 2001 Sep; 65(9):2087-9. PubMed ID: 11676026 [TBL] [Abstract][Full Text] [Related]
16. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis. Dhital S; Lin AH; Hamaker BR; Gidley MJ; Muniandy A PLoS One; 2013; 8(4):e62546. PubMed ID: 23638112 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory potential of Grifola frondosa bioactive fractions on α-amylase and α-glucosidase for management of hyperglycemia. Su CH; Lu TM; Lai MN; Ng LT Biotechnol Appl Biochem; 2013; 60(4):446-52. PubMed ID: 24033596 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of human starch digesting enzymes and intestinal glucose transport by walnut polyphenols. Farazi M; Houghton MJ; Nicolotti L; Murray M; Cardoso BR; Williamson G Food Res Int; 2024 Aug; 189():114572. PubMed ID: 38876610 [TBL] [Abstract][Full Text] [Related]
19. Postprandial effects of a polyphenolic grape extract (PGE) supplement on appetite and food intake: a randomised dose-comparison trial. Shin HS; Kindleysides S; Yip W; Budgett SC; Ingram JR; Poppitt SD Nutr J; 2015 Sep; 14():96. PubMed ID: 26370656 [TBL] [Abstract][Full Text] [Related]
20. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Xiao JB; Högger P Curr Med Chem; 2015; 22(1):23-38. PubMed ID: 25005188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]