These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30800157)

  • 1. Fusion of Motif- and Spectrum-Related Features for Improved EEG-Based Emotion Recognition.
    Tiwari A; Falk TH
    Comput Intell Neurosci; 2019; 2019():3076324. PubMed ID: 30800157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel signal to image transformation and feature level fusion for multimodal emotion recognition.
    Hatipoglu Yilmaz B; Kose C
    Biomed Tech (Berl); 2021 Aug; 66(4):353-362. PubMed ID: 33823091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach to EEG-based emotion recognition using combined feature extraction method.
    Zhang Y; Ji X; Zhang S
    Neurosci Lett; 2016 Oct; 633():152-157. PubMed ID: 27666975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG emotion recognition based on data-driven signal auto-segmentation and feature fusion.
    Gao Y; Zhu Z; Fang F; Zhang Y; Meng M
    J Affect Disord; 2024 Sep; 361():356-366. PubMed ID: 38885847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognizing emotions from EEG subbands using wavelet analysis.
    Candra H; Yuwono M; Handojoseno A; Chai R; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6030-3. PubMed ID: 26737666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Inter-Subject Modeling with a Subject-Based Data Transformation to Improve Affect Recognition from EEG Signals.
    Arevalillo-Herráez M; Cobos M; Roger S; García-Pineda M
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31288378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emotion recognition from EEG using higher order crossings.
    Petrantonakis PC; Hadjileontiadis LJ
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):186-97. PubMed ID: 19858033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.
    Liu YH; Wu CT; Cheng WT; Hsiao YT; Chen PM; Teng JT
    Sensors (Basel); 2014 Jul; 14(8):13361-88. PubMed ID: 25061837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine.
    Liu YH; Wu CT; Kao YH; Chen YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4306-9. PubMed ID: 24110685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical algorithms for emotion classification via functional connectivity.
    Jahromy FZ; Bajoulvand A; Daliri MR
    J Integr Neurosci; 2019 Sep; 18(3):293-297. PubMed ID: 31601078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis.
    Khan MS; Salsabil N; Alam MGR; Dewan MAA; Uddin MZ
    Sci Rep; 2022 Aug; 12(1):14122. PubMed ID: 35986065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Bai O; Li Y
    Comput Biol Med; 2016 Dec; 79():205-214. PubMed ID: 27810626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of Emotions Using Multichannel EEG Data and DBN-GC-Based Ensemble Deep Learning Framework.
    Chao H; Zhi H; Dong L; Liu Y
    Comput Intell Neurosci; 2018; 2018():9750904. PubMed ID: 30647727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition.
    Xefteris VR; Tsanousa A; Georgakopoulou N; Diplaris S; Vrochidis S; Kompatsiaris I
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple-output support vector machine regression with feature selection for arousal/valence space emotion assessment.
    Torres-Valencia CA; Álvarez MA; Orozco-Gutiérrez AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():970-3. PubMed ID: 25570122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-supervised EEG emotion recognition model based on enhanced graph fusion and GCN.
    Li G; Chen N; Jin J
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35378516
    [No Abstract]   [Full Text] [Related]  

  • 18. Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine.
    Candra H; Yuwono M; Chai R; Handojoseno A; Elamvazuthi I; Nguyen HT; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7250-3. PubMed ID: 26737965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG-Based Emotion Recognition Using an Improved Weighted Horizontal Visibility Graph.
    Kong T; Shao J; Hu J; Yang X; Yang S; Malekian R
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-based emotion estimation using Bayesian weighted-log-posterior function and perceptron convergence algorithm.
    Yoon HJ; Chung SY
    Comput Biol Med; 2013 Dec; 43(12):2230-7. PubMed ID: 24290940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.