These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 30800208)

  • 1. Changes in Redox Signaling in the Skeletal Muscle with Aging.
    Szentesi P; Csernoch L; Dux L; Keller-Pintér A
    Oxid Med Cell Longev; 2019; 2019():4617801. PubMed ID: 30800208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox signaling in skeletal muscle: role of aging and exercise.
    Ji LL
    Adv Physiol Educ; 2015 Dec; 39(4):352-9. PubMed ID: 26628659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Homeostasis in Age-Related Muscle Atrophy.
    Sakellariou GK; McDonagh B
    Adv Exp Med Biol; 2018; 1088():281-306. PubMed ID: 30390257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress and skeletal muscle dysfunction with aging.
    Aoi W; Sakuma K
    Curr Aging Sci; 2011 Jul; 4(2):101-9. PubMed ID: 21235498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyphenols prevent ageing-related impairment in skeletal muscle mitochondrial function through decreased reactive oxygen species production.
    Charles AL; Meyer A; Dal-Ros S; Auger C; Keller N; Ramamoorthy TG; Zoll J; Metzger D; Schini-Kerth V; Geny B
    Exp Physiol; 2013 Feb; 98(2):536-45. PubMed ID: 22903980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered S-nitrosylation of p53 is responsible for impaired antioxidant response in skeletal muscle during aging.
    Baldelli S; Ciriolo MR
    Aging (Albany NY); 2016 Dec; 8(12):3450-3467. PubMed ID: 28025407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overweight in elderly people induces impaired autophagy in skeletal muscle.
    Potes Y; de Luxán-Delgado B; Rodriguez-González S; Guimarães MRM; Solano JJ; Fernández-Fernández M; Bermúdez M; Boga JA; Vega-Naredo I; Coto-Montes A
    Free Radic Biol Med; 2017 Sep; 110():31-41. PubMed ID: 28549989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality?
    Baumann CW; Kwak D; Liu HM; Thompson LV
    J Appl Physiol (1985); 2016 Nov; 121(5):1047-1052. PubMed ID: 27197856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Age-related changes of skeletal muscles: physiology, pathology and regeneration].
    Ławniczak A; Kmieć Z
    Postepy Hig Med Dosw (Online); 2012 Jun; 66():392-400. PubMed ID: 22922138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness.
    Ryall JG; Schertzer JD; Lynch GS
    Biogerontology; 2008 Aug; 9(4):213-28. PubMed ID: 18299960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lack of myostatin alters intermyofibrillar mitochondria activity, unbalances redox status, and impairs tolerance to chronic repetitive contractions in muscle.
    Ploquin C; Chabi B; Fouret G; Vernus B; Feillet-Coudray C; Coudray C; Bonnieu A; Ramonatxo C
    Am J Physiol Endocrinol Metab; 2012 Apr; 302(8):E1000-8. PubMed ID: 22318951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-dependent effects on functional aspects in human satellite cells.
    Beccafico S; Puglielli C; Pietrangelo T; Bellomo R; Fanò G; Fulle S
    Ann N Y Acad Sci; 2007 Apr; 1100():345-52. PubMed ID: 17460197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation in skeletal muscle during contractile activity and aging.
    Palomero J; Jackson MJ
    J Anim Sci; 2010 Apr; 88(4):1307-13. PubMed ID: 19820047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle Redox Signaling: Engaged in Sickness and in Health.
    Fortunato RS; Louzada RA
    Antioxid Redox Signal; 2020 Sep; 33(8):539-541. PubMed ID: 32336119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans.
    Tonkonogi M; Fernström M; Walsh B; Ji LL; Rooyackers O; Hammarqvist F; Wernerman J; Sahlin K
    Pflugers Arch; 2003 May; 446(2):261-9. PubMed ID: 12684796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of continuous versus fractionated physical training on muscle oxidative stress parameters and calcium-handling proteins in aged rats.
    Tromm CB; Pozzi BG; Paganini CS; Marques SO; Pedroso GS; Souza PS; Silveira PC; Silva LA; De Souza CT; Pinho RA
    Aging Clin Exp Res; 2016 Oct; 28(5):833-41. PubMed ID: 26620674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice.
    Zabielski P; Lanza IR; Gopala S; Heppelmann CJ; Bergen HR; Dasari S; Nair KS
    Diabetes; 2016 Mar; 65(3):561-73. PubMed ID: 26718503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MICU3 regulates mitochondrial Ca
    Yang YF; Yang W; Liao ZY; Wu YX; Fan Z; Guo A; Yu J; Chen QN; Wu JH; Zhou J; Xiao Q
    Cell Death Dis; 2021 Nov; 12(12):1115. PubMed ID: 34845191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle redox signaling in rheumatoid arthritis.
    Steinz MM; Santos-Alves E; Lanner JT
    Clin Sci (Lond); 2020 Nov; 134(21):2835-2850. PubMed ID: 33146370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Age-related muscle mass loss].
    Czarkowska-Paczek B; Milczarczyk S
    Przegl Lek; 2006; 63(8):658-61. PubMed ID: 17441378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.