These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 30800208)

  • 21. The physiopathologic role of oxidative stress in skeletal muscle.
    Scicchitano BM; Pelosi L; Sica G; Musarò A
    Mech Ageing Dev; 2018 Mar; 170():37-44. PubMed ID: 28851603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protective effect of myostatin gene deletion on aging-related muscle metabolic decline.
    Chabi B; Pauly M; Carillon J; Carnac G; Favier FB; Fouret G; Bonafos B; Vanterpool F; Vernus B; Coudray C; Feillet-Coudray C; Bonnieu A; Lacan D; Koechlin-Ramonatxo C
    Exp Gerontol; 2016 Jun; 78():23-31. PubMed ID: 26944368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox control of skeletal muscle atrophy.
    Powers SK; Morton AB; Ahn B; Smuder AJ
    Free Radic Biol Med; 2016 Sep; 98():208-217. PubMed ID: 26912035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle redox disturbances and oxidative stress as pathomechanisms and therapeutic targets in early-onset myopathies.
    Moulin M; Ferreiro A
    Semin Cell Dev Biol; 2017 Apr; 64():213-223. PubMed ID: 27531051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions between reactive oxygen species generated by contractile activity and aging in skeletal muscle?
    Jackson MJ
    Antioxid Redox Signal; 2013 Sep; 19(8):804-12. PubMed ID: 23682926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skeletal muscle bioenergetics in aging and heart failure.
    Liu SZ; Marcinek DJ
    Heart Fail Rev; 2017 Mar; 22(2):167-178. PubMed ID: 27815651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The biochemistry of aging muscle.
    Carmeli E; Coleman R; Reznick AZ
    Exp Gerontol; 2002 Apr; 37(4):477-89. PubMed ID: 11830351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury.
    Cheng Y; Di S; Fan C; Cai L; Gao C; Jiang P; Hu W; Ma Z; Jiang S; Dong Y; Li T; Wu G; Lv J; Yang Y
    Apoptosis; 2016 Aug; 21(8):905-16. PubMed ID: 27270300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle redox signalling pathways in exercise. Role of antioxidants.
    Mason SA; Morrison D; McConell GK; Wadley GD
    Free Radic Biol Med; 2016 Sep; 98():29-45. PubMed ID: 26912034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skeletal muscle and aging.
    Navarro A; López-Cepero JM; Sánchez del Pino MJ
    Front Biosci; 2001 Jan; 6():D26-44. PubMed ID: 11145924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of intrinsic aerobic capacity, aging and voluntary running on skeletal muscle sirtuins and heat shock proteins.
    Karvinen S; Silvennoinen M; Vainio P; Sistonen L; Koch LG; Britton SL; Kainulainen H
    Exp Gerontol; 2016 Jun; 79():46-54. PubMed ID: 27038700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis.
    Abrigo J; Rivera JC; Aravena J; Cabrera D; Simon F; Ezquer F; Ezquer M; Cabello-Verrugio C
    Oxid Med Cell Longev; 2016; 2016():9047821. PubMed ID: 27579157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox Control of Skeletal Muscle Regeneration.
    Le Moal E; Pialoux V; Juban G; Groussard C; Zouhal H; Chazaud B; Mounier R
    Antioxid Redox Signal; 2017 Aug; 27(5):276-310. PubMed ID: 28027662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of mitochondria in aging of skeletal muscle.
    Figueiredo PA; Mota MP; Appell HJ; Duarte JA
    Biogerontology; 2008 Apr; 9(2):67-84. PubMed ID: 18175203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of ARC ablation on skeletal muscle morphology, function, and apoptotic signaling during aging.
    Vorobej K; Mitchell AS; Smith IC; Donath S; Russell Tupling A; Quadrilatero J
    Exp Gerontol; 2018 Jan; 101():69-79. PubMed ID: 29056555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive oxygen species in sarcopenia: Should we focus on excess oxidative damage or defective redox signalling?
    Jackson MJ
    Mol Aspects Med; 2016 Aug; 50():33-40. PubMed ID: 27161871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial Mechanisms of Neuromuscular Junction Degeneration with Aging.
    Anagnostou ME; Hepple RT
    Cells; 2020 Jan; 9(1):. PubMed ID: 31941062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dysfunctional Nrf2-Keap1 redox signaling in skeletal muscle of the sedentary old.
    Safdar A; deBeer J; Tarnopolsky MA
    Free Radic Biol Med; 2010 Nov; 49(10):1487-93. PubMed ID: 20708680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidative stress and aberrant signaling in aging and cognitive decline.
    Dröge W; Schipper HM
    Aging Cell; 2007 Jun; 6(3):361-70. PubMed ID: 17517043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy.
    Alway SE; Pereira SL; Edens NK; Hao Y; Bennett BT
    Exp Gerontol; 2013 Sep; 48(9):973-84. PubMed ID: 23832076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.