These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30800370)

  • 41. Computational capabilities of random automata networks for reservoir computing.
    Snyder D; Goudarzi A; Teuscher C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042808. PubMed ID: 23679474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo.
    Kawano T; Bouteau F; Mancuso S
    Commun Integr Biol; 2012 Nov; 5(6):519-26. PubMed ID: 23336016
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On-line identification and reconstruction of finite automata with generalized recurrent neural networks.
    Gabrijel I; Dobnikar A
    Neural Netw; 2003 Jan; 16(1):101-20. PubMed ID: 12576110
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A memory-efficient deterministic finite automaton-based bit-split string matching scheme using pattern uniqueness in deep packet inspection.
    Kim H; Choi KI; Choi SI
    PLoS One; 2015; 10(5):e0126517. PubMed ID: 25938779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. X-ray diffraction studies on muscle regulation.
    Popp D; Maeda Y; Stewart AA; Holmes KC
    Adv Biophys; 1991; 27():89-103. PubMed ID: 1755369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [A formal description of mammals' behavior based on data on snow tracking, with pine marten (Martes martes) as a case study].
    Vladimirova ÉD; Morozov VV
    Zh Obshch Biol; 2014; 75(3):182-203. PubMed ID: 25771677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quiescent string dominance parameter F and classification of one-dimensional cellular automata.
    Sakai S; Kanno M; Saito Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066117. PubMed ID: 15244677
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solving multiconstraint assignment problems using learning automata.
    Horn G; Oommen BJ
    IEEE Trans Syst Man Cybern B Cybern; 2010 Feb; 40(1):6-18. PubMed ID: 19884057
    [TBL] [Abstract][Full Text] [Related]  

  • 49. String taxonomy using learning automata.
    Oommen BJ; De St Croix EV
    IEEE Trans Syst Man Cybern B Cybern; 1997; 27(2):354-65. PubMed ID: 18255876
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanomechanics of actin filament: A molecular dynamics simulation.
    Shamloo A; Mehrafrooz B
    Cytoskeleton (Hoboken); 2018 Mar; 75(3):118-130. PubMed ID: 29272080
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unidirectional movement of an actin filament taking advantage of temperature gradients.
    Kawaguchi T; Honda H
    Biosystems; 2007; 90(1):253-62. PubMed ID: 17030086
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic Data Structures for Timed Automata Acceptance.
    Grez A; Mazowiecki F; Pilipczuk M; Puppis G; Riveros C
    Algorithmica; 2022; 84(11):3223-3245. PubMed ID: 36313790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Traveling patterns in cellular automata.
    Urias J; Salazar-Anaya G; Ugalde E; Enciso A
    Chaos; 1996 Sep; 6(3):493-503. PubMed ID: 12780279
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Wavefront cellular learning automata.
    Moradabadi B; Meybodi MR
    Chaos; 2018 Feb; 28(2):021101. PubMed ID: 29495666
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Near-atomic resolution for one state of F-actin.
    Galkin VE; Orlova A; Vos MR; Schröder GF; Egelman EH
    Structure; 2015 Jan; 23(1):173-182. PubMed ID: 25533486
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Parallel biomolecular computation on surfaces with advanced finite automata.
    Soreni M; Yogev S; Kossoy E; Shoham Y; Keinan E
    J Am Chem Soc; 2005 Mar; 127(11):3935-43. PubMed ID: 15771530
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coarse-grained modeling and simulation of actin filament behavior based on Brownian dynamics method.
    Shimada Y; Adachi T; Inoue Y; Hojo M
    Mol Cell Biomech; 2009 Sep; 6(3):161-73. PubMed ID: 19670826
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A syntactic methodology for automatic diagnosis by analysis of continuous time measurements using hierarchical signal representations.
    Tumer MB; Belfore LA; Ropella KM
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(6):951-65. PubMed ID: 18238246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism of Cardiac Tropomyosin Transitions on Filamentous Actin As Revealed by All-Atom Steered Molecular Dynamics Simulations.
    Williams MR; Tardiff JC; Schwartz SD
    J Phys Chem Lett; 2018 Jun; 9(12):3301-3306. PubMed ID: 29863359
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards atomic interpretation of F-actin filament three-dimensional reconstructions.
    Bremer A; Henn C; Goldie KN; Engel A; Smith PR; Aebi U
    J Mol Biol; 1994 Oct; 242(5):683-700. PubMed ID: 7932724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.