These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30800568)

  • 1. Electromagnetic analysis of the lasing thresholds of hybrid plasmon modes of a silver tube nanolaser with active core and active shell.
    Natarov DM; Benson TM; Nosich AI
    Beilstein J Nanotechnol; 2019; 10():294-304. PubMed ID: 30800568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular quantum wire symmetrically loaded with a graphene strip as the plasmonic micro/nano laser: threshold conditions analysis.
    Kaliberda ME; Pogarsky SA; Kostenko OV; Nosych OI; Zinenko TL
    Opt Express; 2024 Mar; 32(7):12213-12227. PubMed ID: 38571051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threshold conditions for transversal modes of tunable plasmonic nanolasers shaped as single and twin graphene-covered circular quantum wires.
    Herasymova DO; Dukhopelnykov SV; Natarov DM; Zinenko TL; Lucido M; Nosich AI
    Nanotechnology; 2022 Sep; 33(49):. PubMed ID: 36044815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic nanolaser using epitaxially grown silver film.
    Lu YJ; Kim J; Chen HY; Wu C; Dabidian N; Sanders CE; Wang CY; Lu MY; Li BH; Qiu X; Chang WH; Chen LJ; Shvets G; Shih CK; Gwo S
    Science; 2012 Jul; 337(6093):450-3. PubMed ID: 22837524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-exciton coupling dynamics and plasmonic lasing in a core-shell nanocavity.
    Wang R; Xu C; You D; Wang X; Chen J; Shi Z; Cui Q; Qiu T
    Nanoscale; 2021 Apr; 13(14):6780-6785. PubMed ID: 33885480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies on the quality factors of whispering gallery modes and hybrid plasmon photon modes.
    Gu P; Chen J; Wan M; Chen Z; Wang Z
    Opt Express; 2017 Apr; 25(8):9295-9304. PubMed ID: 28438005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channel Plasmon Nanowire Lasers with V-Groove Cavities.
    Wei W; Yan X; Shen B; Qin J; Zhang X
    Nanoscale Res Lett; 2018 Jul; 13(1):227. PubMed ID: 30066146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Threshold Nanolaser Based on Hybrid Plasmonic Waveguide Mode Supported by Metallic Grating Waveguide Structure.
    Zhang X; Yan M; Ning T; Zhao L; Jiang S; Huo Y
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-Spectrum Analysis of Perovskite-Based Surface Plasmon Nanolasers.
    Cheng PJ; Zheng QY; Hsu CY; Li H; Hong KB; Zhu Y; Cui Q; Xu C; Lu TC; Lin TR
    Nanoscale Res Lett; 2020 Mar; 15(1):66. PubMed ID: 32227260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiboding and bonding lasing modes with low gain threshold in nonlocal metallic nanoshell.
    Huang Y; Xiao JJ; Gao L
    Opt Express; 2015 Apr; 23(7):8818-28. PubMed ID: 25968719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lasing frequencies and thresholds of the dipole supermodes in an active microdisk concentrically coupled with a passive microring.
    Smotrova EI; Benson TM; Sewell P; Ctyroky J; Nosich AI
    J Opt Soc Am A Opt Image Sci Vis; 2008 Nov; 25(11):2884-92. PubMed ID: 18978871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices.
    Guan J; Sagar LK; Li R; Wang D; Bappi G; Watkins NE; Bourgeois MR; Levina L; Fan F; Hoogland S; Voznyy O; Martins de Pina J; Schaller RD; Schatz GC; Sargent EH; Odom TW
    Nano Lett; 2020 Feb; 20(2):1468-1474. PubMed ID: 32004007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell.
    Pan J; Chen Z; Chen J; Zhan P; Tang CJ; Wang ZL
    Opt Lett; 2012 Apr; 37(7):1181-3. PubMed ID: 22466188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective Lasing Behavior of Monolithic GaN-InGaN Core-Shell Nanorod Lattice under Room Temperature.
    Huang CY; Lin JJ; Chang TC; Liu CY; Tai TY; Hong KB; Lu TC; Kuo HC
    Nano Lett; 2017 Oct; 17(10):6228-6234. PubMed ID: 28926272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refractive-index sensitivities of hybrid surface-plasmon resonances for a core-shell circular silver nanotube sensor.
    Velichko EA; Nosich AI
    Opt Lett; 2013 Dec; 38(23):4978-81. PubMed ID: 24281487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications.
    Xiang C; Chan CK; Wang J
    Sci Rep; 2014 Jan; 4():3720. PubMed ID: 24430254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Individual Nanoresonators Optimized for Lasing and Spasing Operation.
    Szenes A; Vass D; Bánhelyi B; Csete M
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold.
    Hsieh YH; Hsu BW; Peng KN; Lee KW; Chu CW; Chang SW; Lin HW; Yen TJ; Lu YJ
    ACS Nano; 2020 Sep; 14(9):11670-11676. PubMed ID: 32701270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergy between plasmonic nanocavities and random lasing modes: a tool to dequench plasmon quenched fluorophore emission.
    Yadav R; Pal S; Jana S; Roy S; Debnath K; Ray SK; Brundavanam MM; Bhaktha B N S
    Phys Chem Chem Phys; 2023 Oct; 25(41):28336-28349. PubMed ID: 37840472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.