These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30800592)

  • 1. Comparative transcriptomics reveals potential genes involved in the vegetative growth of
    Liu W; Cai Y; He P; Chen L; Bian Y
    3 Biotech; 2019 Mar; 9(3):81. PubMed ID: 30800592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opposite Polarity Monospore Genome De Novo Sequencing and Comparative Analysis Reveal the Possible Heterothallic Life Cycle of
    Liu W; Chen L; Cai Y; Zhang Q; Bian Y
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149649
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparative transcriptome analysis reveals potential fruiting body formation mechanisms in Morchella importuna.
    Hao H; Zhang J; Wang H; Wang Q; Chen M; Juan J; Feng Z; Chen H
    AMB Express; 2019 Jul; 9(1):103. PubMed ID: 31300949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological Characteristics and Comparative Secretome Analysis of
    Cai Y; Ma X; Zhang Q; Yu F; Zhao Q; Huang W; Song J; Liu W
    Front Microbiol; 2021; 12():636344. PubMed ID: 34113321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomics combined with metabolomics unveiled the key genes and metabolites of mycelium growth in
    Fan T; Ren R; Tang S; Zhou Y; Cai M; Zhao W; He Y; Xu J
    Front Microbiol; 2023; 14():1079353. PubMed ID: 36819010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species induce sclerotial formation in Morchella importuna.
    Liu Q; Zhao Z; Dong H; Dong C
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7997-8009. PubMed ID: 29959464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De Novo Analysis of Wolfiporia cocos Transcriptome to Reveal the Differentially Expressed Carbohydrate-Active Enzymes (CAZymes) Genes During the Early Stage of Sclerotial Growth.
    Zhang S; Hu B; Wei W; Xiong Y; Zhu W; Peng F; Yu Y; Zheng Y; Chen P
    Front Microbiol; 2016; 7():83. PubMed ID: 26870032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptome analysis of cells from different areas reveals ROS responsive mechanism at sclerotial initiation stage in Morchella importuna.
    Liu Q; He G; Wei J; Dong C
    Sci Rep; 2021 May; 11(1):9418. PubMed ID: 33941791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of Metabolomes and Transcriptomes Provides Insights into Morphogenesis and Maturation in
    Zhang C; Shi X; Zhang J; Zhang Y; Liu W; Wang W
    J Fungi (Basel); 2023 Nov; 9(12):. PubMed ID: 38132744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of autophagy and apoptosis and lipid accumulation in sclerotial morphogenesis of Morchella importuna.
    He P; Wang K; Cai Y; Hu X; Zheng Y; Zhang J; Liu W
    Micron; 2018 Jun; 109():34-40. PubMed ID: 29614428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome sequence and transcriptome profiles of pathogenic fungus
    Chen C; Fu R; Wang J; Li X; Chen X; Li Q; Lu D
    Comput Struct Biotechnol J; 2021; 19():2607-2617. PubMed ID: 34025947
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of Aging on Culture and Cultivation of the Culinary-Medicinal Mushrooms Morchella importuna and M. sextelata (Ascomycetes).
    He P; Yu M; Cai Y; Liu W; Wang W; Wang S; Li J
    Int J Med Mushrooms; 2019; 21(11):1089-1098. PubMed ID: 32450018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interspecific hybridization between cultivated morels Morchella importuna and Morchella sextelata by PEG-induced double inactivated protoplast fusion.
    He P; Yu M; Wang K; Cai Y; Li B; Liu W
    World J Microbiol Biotechnol; 2020 Mar; 36(4):58. PubMed ID: 32236741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Transcriptome Profiles of the Response of Mycelia of the Genus
    Yue Y; Hao H; Wang Q; Xiao T; Zhang Y; Chen H; Zhang J
    J Fungi (Basel); 2024 Feb; 10(3):. PubMed ID: 38535187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Composition of Aromas and Lipophilic Extracts from Black Morel (
    Tu X; Tang L; Xie G; Deng K; Xie L
    Mycobiology; 2020 Dec; 49(1):78-85. PubMed ID: 33536815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive review on Morchella importuna: cultivation aspects, phytochemistry, and other significant applications.
    Sambyal K; Singh RV
    Folia Microbiol (Praha); 2021 Apr; 66(2):147-157. PubMed ID: 33464471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial cultivation of true morels: current state, issues and perspectives.
    Liu Q; Ma H; Zhang Y; Dong C
    Crit Rev Biotechnol; 2018 Mar; 38(2):259-271. PubMed ID: 28585444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mitochondrial genome of Morchella importuna (272.2 kb) is the largest among fungi and contains numerous introns, mitochondrial non-conserved open reading frames and repetitive sequences.
    Liu W; Cai Y; Zhang Q; Chen L; Shu F; Ma X; Bian Y
    Int J Biol Macromol; 2020 Jan; 143():373-381. PubMed ID: 31830457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live cell confocal laser imaging studies on the nuclear behavior during meiosis and ascosporogenesis in Morchella importuna under artificial cultivation.
    He P; Wang K; Cai Y; Liu W
    Micron; 2017 Oct; 101():108-113. PubMed ID: 28692865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subchromosome-Scale Nuclear and Complete Mitochondrial Genome Characteristics of
    Liu W; Cai Y; Zhang Q; Shu F; Chen L; Ma X; Bian Y
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31940908
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.