These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30801005)

  • 1. Observation of enhanced thermopower due to spin fluctuation in weak itinerant ferromagnet.
    Tsujii N; Nishide A; Hayakawa J; Mori T
    Sci Adv; 2019 Feb; 5(2):eaat5935. PubMed ID: 30801005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the Itinerant Electron Ferromagnetism of Ni
    Sakon T; Hayashi Y; Fukuya A; Li D; Honda F; Umetsu RY; Xu X; Oomi G; Kanomata T; Eto T
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30769883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Improvement of Thermoelectric Performance by Magnetism in Co-Based Full-Heusler Alloys.
    Gui Z; Wang G; Wang H; Zhang Y; Li Y; Wen X; Li Y; Peng K; Zhou X; Ying J; Chen X
    Adv Sci (Weinh); 2023 Oct; 10(28):e2303967. PubMed ID: 37541665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Characteristic Properties of Magnetostriction and Magneto-Volume Effects of Ni
    Sakon T; Yamasaki Y; Kodama H; Kanomata T; Nojiri H; Adachi Y
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31698865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin fluctuations yield zT enhancement in ferromagnets.
    Polash MMH; Vashaee D
    iScience; 2021 Nov; 24(11):103356. PubMed ID: 34820607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weak itinerant ferromagnetism and non-Fermi liquid behavior in Ni-
    Vishvakarma S; Srinivas V
    J Phys Condens Matter; 2021 Apr; 33(20):. PubMed ID: 33567418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the resistivity and absolute thermoelectric power of disordered metals and alloys.
    Gasser JG
    J Phys Condens Matter; 2008 Mar; 20(11):114103. PubMed ID: 21694196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of weak itinerant ferromagnetism and Griffiths like phase in MnFeGe.
    Dara HK; Patra D; Moharana GP; Sarangi SN; Samal D
    J Phys Condens Matter; 2023 Jun; 35(39):. PubMed ID: 37343579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of 3d electrons in the appearance of ferromagnetism in the antiferromagnetic Ru2MnGe Heusler compound: a magnetic Compton scattering study.
    Mizusaki S; Ohnishi T; Douzono A; Hirose M; Nagata Y; Itou M; Sakurai Y; Ozawa TC; Samata H; Noro Y
    J Phys Condens Matter; 2012 Jun; 24(25):255601. PubMed ID: 22634608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon.
    Zheng J; Chi F; Guo Y
    J Phys Condens Matter; 2015 Jul; 27(29):295302. PubMed ID: 26139695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong spin Seebeck effect in Kondo T-shaped double quantum dots.
    Wójcik KP; Weymann I
    J Phys Condens Matter; 2017 Feb; 29(5):055303. PubMed ID: 27941235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe(3)Sn(2).
    Fenner LA; Dee AA; Wills AS
    J Phys Condens Matter; 2009 Nov; 21(45):452202. PubMed ID: 21694002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of spin Seebeck contribution to the transverse thermopower in Ni-Pt and MnBi-Au bulk nanocomposites.
    Boona SR; Vandaele K; Boona IN; McComb DW; Heremans JP
    Nat Commun; 2016 Dec; 7():13714. PubMed ID: 27941927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive DFT investigation of transition-metal-based new quaternary Heusler alloys CoNbMnZ (Z = Ge, Sn): compatible for spin-dependent and thermoelectric applications.
    Seh AQ; Gupta DC
    RSC Adv; 2020 Nov; 10(71):43870-43881. PubMed ID: 35519700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoelectric Signal Enhancement by Reconciling the Spin Seebeck and Anomalous Nernst Effects in Ferromagnet/Non-magnet Multilayers.
    Lee KD; Kim DJ; Yeon Lee H; Kim SH; Lee JH; Lee KM; Jeong JR; Lee KS; Song HS; Sohn JW; Shin SC; Park BG
    Sci Rep; 2015 May; 5():10249. PubMed ID: 26020492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Forced Magnetostrictions and Magnetic Properties of Ni
    Sakon T; Yamazaki J; Komori T; Kanomata T; Narumi Y; Hagiwara M; Nojiri H; Adachi Y
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32344877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light Element Doping and Introducing Spin Entropy: An Effective Strategy for Enhancement of Thermoelectric Properties in BiCuSeO.
    Tang J; Xu R; Zhang J; Li D; Zhou W; Li X; Wang Z; Xu F; Tang G; Chen G
    ACS Appl Mater Interfaces; 2019 May; 11(17):15543-15551. PubMed ID: 30964989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
    Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T
    Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical enhancement of molecular thermoelectric efficiency.
    Sangtarash S; Sadeghi H
    Nanoscale Adv; 2020 Mar; 2(3):1031-1035. PubMed ID: 36133063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.