These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 30801087)
1. Intrinsic hydrogen evolution capability and a theoretically supported reaction mechanism of a paddlewheel-type dirhodium complex. Kataoka Y; Yano N; Handa M; Kawamoto T Dalton Trans; 2019 Jun; 48(21):7302-7312. PubMed ID: 30801087 [TBL] [Abstract][Full Text] [Related]
2. Hydroxypyridinate-bridged paddlewheel-type dirhodium complex as a catalyst for photochemical and electrochemical hydrogen evolution. Kataoka Y; Sato K; Yano N J Chem Phys; 2023 Nov; 159(20):. PubMed ID: 38014787 [TBL] [Abstract][Full Text] [Related]
3. A computational mechanistic investigation of hydrogen production in water using the [Rh(III)(dmbpy)2Cl2](+)/[Ru(II)(bpy)3](2+)/ascorbic acid photocatalytic system. Kayanuma M; Stoll T; Daniel C; Odobel F; Fortage J; Deronzier A; Collomb MN Phys Chem Chem Phys; 2015 Apr; 17(16):10497-509. PubMed ID: 25804803 [TBL] [Abstract][Full Text] [Related]
4. Water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines. Yuan YJ; Yu ZT; Cai JG; Zheng C; Huang W; Zou ZG ChemSusChem; 2013 Aug; 6(8):1357-65. PubMed ID: 23843363 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical Generation and Spectroscopic Characterization of the Key Rhodium(III) Hydride Intermediates of Rhodium Poly(bipyridyl) H Castillo CE; Stoll T; Sandroni M; Gueret R; Fortage J; Kayanuma M; Daniel C; Odobel F; Deronzier A; Collomb MN Inorg Chem; 2018 Sep; 57(17):11225-11239. PubMed ID: 30129361 [TBL] [Abstract][Full Text] [Related]
6. [Rh(III)(dmbpy)2Cl2]+ as a highly efficient catalyst for visible-light-driven hydrogen production in pure water: comparison with other rhodium catalysts. Stoll T; Gennari M; Serrano I; Fortage J; Chauvin J; Odobel F; Rebarz M; Poizat O; Sliwa M; Deronzier A; Collomb MN Chemistry; 2013 Jan; 19(2):782-92. PubMed ID: 23169449 [TBL] [Abstract][Full Text] [Related]
7. Efficient [FeFe] hydrogenase mimic dyads covalently linking to iridium photosensitizer for photocatalytic hydrogen evolution. Cui HH; Hu MQ; Wen HM; Chai GL; Ma CB; Chen H; Chen CN Dalton Trans; 2012 Dec; 41(45):13899-907. PubMed ID: 23023604 [TBL] [Abstract][Full Text] [Related]
8. Large improvement in the catalytic activity due to small changes in the diimine ligands: new mechanistic insight into the dirhodium(II,II) complex-based photocatalytic H2 production. Xie J; Li C; Zhou Q; Wang W; Hou Y; Zhang B; Wang X Inorg Chem; 2012 Jun; 51(11):6376-84. PubMed ID: 22591116 [TBL] [Abstract][Full Text] [Related]
9. Paramagnetic one-dimensional chains comprised of trinuclear Pt-Cu-Pt and paddlewheel dirhodium complexes with metal-metal bonds. Uemura K; Ebihara M Inorg Chem; 2013 May; 52(9):5535-50. PubMed ID: 23617357 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen storage and evolution catalysed by metal hydride complexes. Fukuzumi S; Suenobu T Dalton Trans; 2013 Jan; 42(1):18-28. PubMed ID: 23080061 [TBL] [Abstract][Full Text] [Related]
12. Cobalt(II) Pentaaza-Macrocyclic Schiff Base Complex as Catalyst for Light-Driven Hydrogen Evolution in Water: Electrochemical Generation and Theoretical Investigation of the One-Electron Reduced Species. Gueret R; Castillo CE; Rebarz M; Thomas F; Sliwa M; Chauvin J; Dautreppe B; Pécaut J; Fortage J; Collomb MN Inorg Chem; 2019 Jul; 58(14):9043-9056. PubMed ID: 31247812 [TBL] [Abstract][Full Text] [Related]
13. Photo- and electrocatalytic H2 production by new first-row transition-metal complexes based on an aminopyridine pentadentate ligand. Call A; Codolà Z; Acuña-Parés F; Lloret-Fillol J Chemistry; 2014 May; 20(20):6171-83. PubMed ID: 24692261 [TBL] [Abstract][Full Text] [Related]
14. Nickel pyridinethiolate complexes as catalysts for the light-driven production of hydrogen from aqueous solutions in noble-metal-free systems. Han Z; Shen L; Brennessel WW; Holland PL; Eisenberg R J Am Chem Soc; 2013 Oct; 135(39):14659-69. PubMed ID: 24004329 [TBL] [Abstract][Full Text] [Related]
15. Cobalt(III) tetraaza-macrocyclic complexes as efficient catalyst for photoinduced hydrogen production in water: Theoretical investigation of the electronic structure of the reduced species and mechanistic insight. Gueret R; Castillo CE; Rebarz M; Thomas F; Hargrove AA; Pécaut J; Sliwa M; Fortage J; Collomb MN J Photochem Photobiol B; 2015 Nov; 152(Pt A):82-94. PubMed ID: 25997378 [TBL] [Abstract][Full Text] [Related]
16. Judicious Design of Cationic, Cyclometalated Ir(III) Complexes for Photochemical Energy Conversion and Optoelectronics. Mills IN; Porras JA; Bernhard S Acc Chem Res; 2018 Feb; 51(2):352-364. PubMed ID: 29336548 [TBL] [Abstract][Full Text] [Related]
17. Electronic and Steric Tuning of Catalytic H Wang P; Liang G; Reddy MR; Long M; Driskill K; Lyons C; Donnadieu B; Bollinger JC; Webster CE; Zhao X J Am Chem Soc; 2018 Jul; 140(29):9219-9229. PubMed ID: 29949370 [TBL] [Abstract][Full Text] [Related]
18. A noble-metal-free, tetra-nickel polyoxotungstate catalyst for efficient photocatalytic hydrogen evolution. Lv H; Guo W; Wu K; Chen Z; Bacsa J; Musaev DG; Geletii YV; Lauinger SM; Lian T; Hill CL J Am Chem Soc; 2014 Oct; 136(40):14015-8. PubMed ID: 25243410 [TBL] [Abstract][Full Text] [Related]
19. Investigation and enhancement of the stability and performance of water reduction systems based on cyclometalated iridium(III) complexes. Hansen S; Pohl MM; Klahn M; Spannenberg A; Beweries T ChemSusChem; 2013 Jan; 6(1):92-101. PubMed ID: 23147800 [TBL] [Abstract][Full Text] [Related]
20. Photochemical and thermal hydrogen production from water catalyzed by carboxylate-bridged dirhodium(II) complexes. Tanaka S; Masaoka S; Yamauchi K; Annaka M; Sakai K Dalton Trans; 2010 Dec; 39(46):11218-26. PubMed ID: 20976343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]