These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 30801236)

  • 1. High Throughput Sequencing For Plant Virus Detection and Discovery.
    Villamor DEV; Ho T; Al Rwahnih M; Martin RR; Tzanetakis IE
    Phytopathology; 2019 May; 109(5):716-725. PubMed ID: 30801236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current impact and future directions of high throughput sequencing in plant virus diagnostics.
    Massart S; Olmos A; Jijakli H; Candresse T
    Virus Res; 2014 Aug; 188():90-6. PubMed ID: 24717426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards the validation of high-throughput sequencing (HTS) for routine plant virus diagnostics: measurement of variation linked to HTS detection of citrus viruses and viroids.
    Bester R; Cook G; Breytenbach JHJ; Steyn C; De Bruyn R; Maree HJ
    Virol J; 2021 Mar; 18(1):61. PubMed ID: 33752714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies.
    Maliogka VI; Minafra A; Saldarelli P; Ruiz-García AB; Glasa M; Katis N; Olmos A
    Viruses; 2018 Aug; 10(8):. PubMed ID: 30126105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods in virus diagnostics: from ELISA to next generation sequencing.
    Boonham N; Kreuze J; Winter S; van der Vlugt R; Bergervoet J; Tomlinson J; Mumford R
    Virus Res; 2014 Jun; 186():20-31. PubMed ID: 24361981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality Assessment and Validation of High-Throughput Sequencing for Grapevine Virus Diagnostics.
    Soltani N; Stevens KA; Klaassen V; Hwang MS; Golino DA; Al Rwahnih M
    Viruses; 2021 Jun; 13(6):. PubMed ID: 34208336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatic Tools and Genome Analysis of Citrus tristeza virus.
    Ruiz-García AB; Bester R; Olmos A; Maree HJ
    Methods Mol Biol; 2019; 2015():163-178. PubMed ID: 31222703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TASPERT: Target-Specific Reverse Transcript Pools to Improve HTS Plant Virus Diagnostics.
    Espindola AS; Sempertegui-Bayas D; Bravo-Padilla DF; Freire-Zapata V; Ochoa-Corona F; Cardwell KF
    Viruses; 2021 Jun; 13(7):. PubMed ID: 34202758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genome-wide diversity study of grapevine rupestris stem pitting-associated virus.
    Hily JM; Beuve M; Vigne E; Demangeat G; Candresse T; Lemaire O
    Arch Virol; 2018 Nov; 163(11):3105-3111. PubMed ID: 30043203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant viruses and viroids in the United Kingdom: An analysis of first detections and novel discoveries from 1980 to 2014.
    Fox A; Mumford RA
    Virus Res; 2017 Sep; 241():10-18. PubMed ID: 28690070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant Virus Metagenomics: Advances in Virus Discovery.
    Roossinck MJ; Martin DP; Roumagnac P
    Phytopathology; 2015 Jun; 105(6):716-27. PubMed ID: 26056847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing.
    Rivarez MPS; Vučurović A; Mehle N; Ravnikar M; Kutnjak D
    Front Microbiol; 2021; 12():671925. PubMed ID: 34093492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Spanish Olive Virome by High Throughput Sequencing Opens New Insights and Uncertainties.
    Ruiz-García AB; Canales C; Morán F; Ruiz-Torres M; Herrera-Mármol M; Olmos A
    Viruses; 2021 Nov; 13(11):. PubMed ID: 34835039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Genome Sequencing (TG-Seq) Approaches to Detect Plant Viruses.
    Maina S; Zheng L; Rodoni BC
    Viruses; 2021 Mar; 13(4):. PubMed ID: 33808381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Next-Generation Sequencing Versus Biological Indexing for the Optimal Detection of Viral Pathogens in Grapevine.
    Al Rwahnih M; Daubert S; Golino D; Islas C; Rowhani A
    Phytopathology; 2015 Jun; 105(6):758-63. PubMed ID: 25689518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Four New Tomato Viruses in Serbia Using Post Hoc High-Throughput Sequencing Analysis of Samples From a Large-Scale Field Survey.
    Vučurović A; Kutnjak D; Mehle N; Stanković I; Pecman A; Bulajić A; Krstić B; Ravnikar M
    Plant Dis; 2021 Sep; 105(9):2325-2332. PubMed ID: 33761774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Oxford Nanopore Technology to Plant Virus Detection.
    Liefting LW; Waite DW; Thompson JR
    Viruses; 2021 Jul; 13(8):. PubMed ID: 34452290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Sequencing Application in the Diagnosis and Discovery of Plant-Infecting Viruses in Africa, A Decade Later.
    Ibaba JD; Gubba A
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33081084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Sequencing Identifies Novel Viruses in Nectarine: Insights to the Etiology of Stem-Pitting Disease.
    Villamor DE; Mekuria TA; Pillai SS; Eastwell KC
    Phytopathology; 2016 May; 106(5):519-27. PubMed ID: 26780433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of plant biosecurity in preventing and controlling emerging plant virus disease epidemics.
    Rodoni B
    Virus Res; 2009 May; 141(2):150-7. PubMed ID: 19152816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.