These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 30801578)
1. First demonstration of the use of very large Stokes shift cycloparaphenylenes as promising organic luminophores for transparent luminescent solar concentrators. Della Sala P; Buccheri N; Sanzone A; Sassi M; Neri P; Talotta C; Rocco A; Pinchetti V; Beverina L; Brovelli S; Gaeta C Chem Commun (Camb); 2019 Mar; 55(21):3160-3163. PubMed ID: 30801578 [TBL] [Abstract][Full Text] [Related]
2. Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators. Banal JL; Zhang B; Jones DJ; Ghiggino KP; Wong WW Acc Chem Res; 2017 Jan; 50(1):49-57. PubMed ID: 27992172 [TBL] [Abstract][Full Text] [Related]
3. Heterostructured Nanotetrapod Luminophores for Reabsorption Elimination within Luminescent Solar Concentrators. Gordon CK; Browne LD; Chan S; Brett MW; Zemke-Smith C; Hardy J; Price MB; Davis NJLK ACS Appl Mater Interfaces; 2023 Apr; 15(14):17914-17921. PubMed ID: 36975316 [TBL] [Abstract][Full Text] [Related]
4. Boosting efficiency of luminescent solar concentrators using ultra-bright carbon dots with large Stokes shift. Li J; Zhao H; Zhao X; Gong X Nanoscale Horiz; 2022 Dec; 8(1):83-94. PubMed ID: 36321503 [TBL] [Abstract][Full Text] [Related]
5. Transparent and Colorless Luminescent Solar Concentrators Based on ZnO Quantum Dots for Building-Integrated Photovoltaics. Fimbres-Romero MJ; Flores-Pacheco Á; Álvarez-Ramos ME; Lopez-Delgado R ACS Omega; 2024 Jul; 9(26):28008-28017. PubMed ID: 38973904 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and Spectroscopic Characterization of Thienopyrazine-Based Fluorophores for Application in Luminescent Solar Concentrators (LSCs). Yzeiri X; Calamante M; Dessì A; Franchi D; Pucci A; Ventura F; Reginato G; Zani L; Mordini A Molecules; 2021 Sep; 26(18):. PubMed ID: 34576899 [TBL] [Abstract][Full Text] [Related]
7. Stokes-Shift-Engineered Indium Phosphide Quantum Dots for Efficient Luminescent Solar Concentrators. Sadeghi S; Bahmani Jalali H; Melikov R; Ganesh Kumar B; Mohammadi Aria M; Ow-Yang CW; Nizamoglu S ACS Appl Mater Interfaces; 2018 Apr; 10(15):12975-12982. PubMed ID: 29589740 [TBL] [Abstract][Full Text] [Related]
8. High Stokes shift perylene dyes for luminescent solar concentrators. Sanguineti A; Sassi M; Turrisi R; Ruffo R; Vaccaro G; Meinardi F; Beverina L Chem Commun (Camb); 2013 Feb; 49(16):1618-20. PubMed ID: 23338660 [TBL] [Abstract][Full Text] [Related]
9. Impact of Stokes Shift on the Performance of Near-Infrared Harvesting Transparent Luminescent Solar Concentrators. Yang C; Zhang J; Peng WT; Sheng W; Liu D; Kuttipillai PS; Young M; Donahue MR; Levine BG; Borhan B; Lunt RR Sci Rep; 2018 Nov; 8(1):16359. PubMed ID: 30397272 [TBL] [Abstract][Full Text] [Related]
10. Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Zhou Y; Zhao H; Ma D; Rosei F Chem Soc Rev; 2018 Jul; 47(15):5866-5890. PubMed ID: 29915833 [TBL] [Abstract][Full Text] [Related]
11. Highly transparent and luminescent gel glass based on reabsorption-free gold nanoclusters. Cai KB; Huang HY; Chen PW; Wen XM; Li K; Co KCC; Shen JL; Chiu KP; Yuan CT Nanoscale; 2020 May; 12(19):10781-10789. PubMed ID: 32391848 [TBL] [Abstract][Full Text] [Related]
13. Semi-Transparent Luminescent Solar Concentrators Based on Intramolecular Energy Transfer in Polyurethane Matrices. Tatsi E; De Marzi M; Mauri L; Colombo A; Botta C; Turri S; Dragonetti C; Griffini G Macromol Rapid Commun; 2024 Jun; 45(12):e2300724. PubMed ID: 38485136 [TBL] [Abstract][Full Text] [Related]
14. Mn-Doped Multiple Quantum Well Perovskites for Efficient Large-Area Luminescent Solar Concentrators. Wei T; Lian K; Tao J; Zhang H; Xu D; Han J; Fan C; Zhang Z; Bi W; Sun C ACS Appl Mater Interfaces; 2022 Oct; 14(39):44572-44580. PubMed ID: 36125906 [TBL] [Abstract][Full Text] [Related]
15. Doped Halide Perovskite Nanocrystals for Reabsorption-Free Luminescent Solar Concentrators. Meinardi F; Akkerman QA; Bruni F; Park S; Mauri M; Dang Z; Manna L; Brovelli S ACS Energy Lett; 2017 Oct; 2(10):2368-2377. PubMed ID: 31206029 [TBL] [Abstract][Full Text] [Related]
16. Characterization and reduction of reabsorption losses in luminescent solar concentrators. Wilson LR; Rowan BC; Robertson N; Moudam O; Jones AC; Richards BS Appl Opt; 2010 Mar; 49(9):1651-61. PubMed ID: 20300163 [TBL] [Abstract][Full Text] [Related]
18. Nanocrystals for luminescent solar concentrators. Bradshaw LR; Knowles KE; McDowall S; Gamelin DR Nano Lett; 2015 Feb; 15(2):1315-23. PubMed ID: 25585039 [TBL] [Abstract][Full Text] [Related]
19. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters. Huang HY; Cai KB; Chang LY; Chen PW; Lin TN; Lin CAJ; Shen JL; Talite MJ; Chou WC; Yuan CT Nanotechnology; 2017 Sep; 28(37):375702. PubMed ID: 28682300 [TBL] [Abstract][Full Text] [Related]
20. Eco-Friendly and Efficient Luminescent Solar Concentrators Based on a Copper(I)-Halide Composite. Wei T; Wang L; Sun C; Xu D; Tao J; Zhang H; Han J; Fan C; Zhang Z; Bi W ACS Appl Mater Interfaces; 2021 Dec; 13(47):56348-56357. PubMed ID: 34783239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]