BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30802034)

  • 1. Metabolic Engineering of a Homoserine-Derived Non-Natural Pathway for the De Novo Production of 1,3-Propanediol from Glucose.
    Zhong W; Zhang Y; Wu W; Liu D; Chen Z
    ACS Synth Biol; 2019 Mar; 8(3):587-595. PubMed ID: 30802034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose.
    Chen Z; Geng F; Zeng AP
    Biotechnol J; 2015 Feb; 10(2):284-9. PubMed ID: 25307849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of Phosphoserine Aminotransferase Increases the Conversion of l-Homoserine to 4-Hydroxy-2-ketobutyrate in a Glycerol-Independent Pathway of 1,3-Propanediol Production from Glucose.
    Zhang Y; Ma C; Dischert W; Soucaille P; Zeng AP
    Biotechnol J; 2019 Sep; 14(9):e1900003. PubMed ID: 30925016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a synthetic pathway for the production of 1,3-propanediol from glucose.
    Frazão CJR; Trichez D; Serrano-Bataille H; Dagkesamanskaia A; Topham CM; Walther T; François JM
    Sci Rep; 2019 Aug; 9(1):11576. PubMed ID: 31399628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Production of 1,3-Propanediol from Diverse Carbohydrates via a Non-natural Pathway Using 3-Hydroxypropionic Acid as an Intermediate.
    Li Z; Wu Z; Cen X; Liu Y; Zhang Y; Liu D; Chen Z
    ACS Synth Biol; 2021 Mar; 10(3):478-486. PubMed ID: 33625207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of 1,3-Propanediol via a New Pathway from Glucose in
    Li M; Zhang Y; Li J; Tan T
    ACS Synth Biol; 2023 Jul; 12(7):2083-2093. PubMed ID: 37316976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Aldolase-Catalyzed New Metabolic Pathway for the Assimilation of Formaldehyde and Methanol To Synthesize 2-Keto-4-hydroxybutyrate and 1,3-Propanediol in
    Wang C; Ren J; Zhou L; Li Z; Chen L; Zeng AP
    ACS Synth Biol; 2019 Nov; 8(11):2483-2493. PubMed ID: 31603652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational engineering of a malate dehydrogenase for microbial production of 2,4-dihydroxybutyric acid via homoserine pathway.
    Frazão CJR; Topham CM; Malbert Y; François JM; Walther T
    Biochem J; 2018 Dec; 475(23):3887-3901. PubMed ID: 30409827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Protein and Metabolic Engineering Strategies for High-Level Production of O-Acetylhomoserine in Escherichia coli.
    Wei L; Wang Q; Xu N; Cheng J; Zhou W; Han G; Jiang H; Liu J; Ma Y
    ACS Synth Biol; 2019 May; 8(5):1153-1167. PubMed ID: 30973696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex Design of the Metabolic Network for Production of l-Homoserine in Escherichia coli.
    Liu P; Zhang B; Yao ZH; Liu ZQ; Zheng YG
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32801175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol.
    Jain R; Sun X; Yuan Q; Yan Y
    ACS Synth Biol; 2015 Jun; 4(6):746-56. PubMed ID: 25490349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli.
    Hwang HJ; Kim JW; Ju SY; Park JH; Lee PC
    Biotechnol Bioeng; 2017 Feb; 114(2):468-473. PubMed ID: 27543929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Engineering of
    Cen X; Liu Y; Chen B; Liu D; Chen Z
    ACS Synth Biol; 2021 Jan; 10(1):192-203. PubMed ID: 33301309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.
    Luo ZW; Kim WJ; Lee SY
    ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.
    Hirokawa Y; Maki Y; Hanai T
    Metab Eng; 2017 Jan; 39():192-199. PubMed ID: 27998670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OptSSeq: High-Throughput Sequencing Readout of Growth Enrichment Defines Optimal Gene Expression Elements for Homoethanologenesis.
    Ghosh IN; Landick R
    ACS Synth Biol; 2016 Dec; 5(12):1519-1534. PubMed ID: 27404024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli for high production of 1,5-pentanediol via a cadaverine-derived pathway.
    Cen X; Liu Y; Zhu F; Liu D; Chen Z
    Metab Eng; 2022 Nov; 74():168-177. PubMed ID: 36328298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose.
    Li Z; Dong Y; Liu Y; Cen X; Liu D; Chen Z
    Metab Eng; 2022 Mar; 70():79-88. PubMed ID: 35038553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Escherichia coli for acetaldehyde overproduction using pyruvate decarboxylase from Zymomonas mobilis.
    Balagurunathan B; Tan L; Zhao H
    Enzyme Microb Technol; 2018 Feb; 109():58-65. PubMed ID: 29224627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of metabolic pathways for bioconversion of lignocellulose to ethanol through genetic engineering.
    Chen J; Zhang W; Tan L; Wang Y; He G
    Biotechnol Adv; 2009; 27(5):593-8. PubMed ID: 19401227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.