These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30802077)

  • 1. Accuracy instructions differently modulate visual and nonvisual contributions to ongoing reaches.
    de Grosbois J; Jovanov K; Tremblay L
    Can J Exp Psychol; 2019 Sep; 73(3):167-178. PubMed ID: 30802077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid online corrections for upper limb reaches to perturbed somatosensory targets: evidence for non-visual sensorimotor transformation processes.
    Manson GA; Blouin J; Kumawat AS; Crainic VA; Tremblay L
    Exp Brain Res; 2019 Mar; 237(3):839-853. PubMed ID: 30610265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Goal-directed reaching: the allocentric coding of target location renders an offline mode of control.
    Manzone J; Heath M
    Exp Brain Res; 2018 Apr; 236(4):1149-1159. PubMed ID: 29453490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using proprioception to control ongoing actions: dominance of vision or altered proprioceptive weighing?
    Goodman R; Tremblay L
    Exp Brain Res; 2018 Jul; 236(7):1897-1910. PubMed ID: 29696313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of visuomotor-map uncertainty on visuomotor adaptation.
    Saijo N; Gomi H
    J Neurophysiol; 2012 Mar; 107(6):1576-85. PubMed ID: 22190631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target modality affects visually guided online control of reaching.
    Cameron BD; López-Moliner J
    Vision Res; 2015 May; 110(Pt B):233-43. PubMed ID: 24997229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online modification of goal-directed control in human reaching movements.
    De Comite A; Crevecoeur F; Lefèvre P
    J Neurophysiol; 2021 May; 125(5):1883-1898. PubMed ID: 33852821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of visuomotor delays on the control of movement and on perceptual localization in the presence and absence of visual targets.
    Avraham G; Sulimani E; Mussa-Ivaldi FA; Nisky I
    J Neurophysiol; 2019 Dec; 122(6):2259-2271. PubMed ID: 31577532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amending Ongoing Upper-Limb Reaches: Visual and Proprioceptive Contributions?
    Goodman R; Crainic VA; Bested SR; Wijeyaratnam DO; de Grosbois J; Tremblay L
    Multisens Res; 2018 Jan; 31(5):455-480. PubMed ID: 31264599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment.
    Wijeyaratnam DO; Chua R; Cressman EK
    Exp Brain Res; 2019 Jun; 237(6):1431-1444. PubMed ID: 30895342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multisensory integration during motor planning.
    Sober SJ; Sabes PN
    J Neurosci; 2003 Aug; 23(18):6982-92. PubMed ID: 12904459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Goal-directed reaching: movement strategies influence the weighting of allocentric and egocentric visual cues.
    Neely KA; Tessmer A; Binsted G; Heath M
    Exp Brain Res; 2008 Apr; 186(3):375-84. PubMed ID: 18087697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The specificity of practice hypothesis in goal-directed movements: visual dominance or proprioception neglect?
    Toussaint L; Meugnot A; Badets A; Chesnet D; Proteau L
    Psychol Res; 2017 Mar; 81(2):407-414. PubMed ID: 26873383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learned rather than online relative weighting of visual-proprioceptive sensory cues.
    Mikula L; Gaveau V; Pisella L; Khan AZ; Blohm G
    J Neurophysiol; 2018 May; 119(5):1981-1992. PubMed ID: 29465322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates for task-relevant facilitation of visual inputs during visually-guided hand movements.
    Lebar N; Bernier PM; Guillaume A; Mouchnino L; Blouin J
    Neuroimage; 2015 Nov; 121():39-50. PubMed ID: 26191651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some binocular advantages for planning reach, but not grasp, components of prehension.
    Grant S; Conway ML
    Exp Brain Res; 2019 May; 237(5):1239-1255. PubMed ID: 30850853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimal velocity for online limb-target regulation processes?
    Tremblay L; Crainic VA; de Grosbois J; Bhattacharjee A; Kennedy A; Hansen S; Welsh TN
    Exp Brain Res; 2017 Jan; 235(1):29-40. PubMed ID: 27618816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitating the use of online visual feedback: advance information and the inter-trial interval?
    Cheng DT; Manson GA; Kennedy A; Tremblay L
    Motor Control; 2013 Apr; 17(2):111-22. PubMed ID: 23579560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying online visuomotor feedback utilization in the frequency domain.
    de Grosbois J; Tremblay L
    Behav Res Methods; 2016 Dec; 48(4):1653-1666. PubMed ID: 26542974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
    Tzorakoleftherakis E; Murphey TD; Scheidt RA
    Exp Brain Res; 2016 Aug; 234(8):2403-14. PubMed ID: 27074942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.