These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 30802238)

  • 21. The coupling features of electrical synapses modulate neuronal synchrony in hypothalamic superachiasmatic nucleus.
    Wang MH; Chen N; Wang JH
    Brain Res; 2014 Mar; 1550():9-17. PubMed ID: 24440632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4.
    Gibson JR; Beierlein M; Connors BW
    J Neurophysiol; 2005 Jan; 93(1):467-80. PubMed ID: 15317837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses.
    Liu P; Chen B; Mailler R; Wang ZW
    Nat Commun; 2017 Mar; 8():14818. PubMed ID: 28317880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The contribution of electrical synapses to field potential oscillations in the hippocampal formation.
    Posłuszny A
    Front Neural Circuits; 2014; 8():32. PubMed ID: 24772068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease.
    O'Brien J; Bloomfield SA
    Annu Rev Vis Sci; 2018 Sep; 4():79-100. PubMed ID: 29889655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells.
    Szoboszlay M; Lőrincz A; Lanore F; Vervaeke K; Silver RA; Nusser Z
    Neuron; 2016 Jun; 90(5):1043-56. PubMed ID: 27133465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Potential Role of Gap Junctional Plasticity in the Regulation of State.
    Coulon P; Landisman CE
    Neuron; 2017 Mar; 93(6):1275-1295. PubMed ID: 28334604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the occurrence and enigmatic functions of mixed (chemical plus electrical) synapses in the mammalian CNS.
    Nagy JI; Pereda AE; Rash JE
    Neurosci Lett; 2019 Mar; 695():53-64. PubMed ID: 28911821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchronized gamma-frequency inhibition in neocortex depends on excitatory-inhibitory interactions but not electrical synapses.
    Neske GT; Connors BW
    J Neurophysiol; 2016 Aug; 116(2):351-68. PubMed ID: 27121576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina.
    Kuo SP; Schwartz GW; Rieke F
    Neuron; 2016 Apr; 90(2):320-32. PubMed ID: 27068789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability of electrical coupling despite massive developmental changes of intrinsic neuronal physiology.
    Parker PR; Cruikshank SJ; Connors BW
    J Neurosci; 2009 Aug; 29(31):9761-70. PubMed ID: 19657029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design principles of electrical synaptic plasticity.
    O'Brien J
    Neurosci Lett; 2019 Mar; 695():4-11. PubMed ID: 28893590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The combined effects of inhibitory and electrical synapses in synchrony.
    Pfeuty B; Mato G; Golomb D; Hansel D
    Neural Comput; 2005 Mar; 17(3):633-70. PubMed ID: 15802009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex.
    Yao XH; Wang M; He XN; He F; Zhang SQ; Lu W; Qiu ZL; Yu YC
    Nat Commun; 2016 Aug; 7():12229. PubMed ID: 27510304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity.
    Pereda AE; Curti S; Hoge G; Cachope R; Flores CE; Rash JE
    Biochim Biophys Acta; 2013 Jan; 1828(1):134-46. PubMed ID: 22659675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PUPIL enables mapping and stamping of transient electrical connectivity in developing nervous systems.
    Xie S; Li H; Yao F; Huang J; Yang X; Chen X; Liu Q; Zhuang M; He S
    Cell Rep; 2021 Oct; 37(3):109853. PubMed ID: 34686323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical synapses in mammalian CNS: Past eras, present focus and future directions.
    Nagy JI; Pereda AE; Rash JE
    Biochim Biophys Acta Biomembr; 2018 Jan; 1860(1):102-123. PubMed ID: 28577972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance.
    Tchumatchenko T; Clopath C
    Nat Commun; 2014 Nov; 5():5512. PubMed ID: 25405458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical and chemical synapses between relay neurons in developing thalamus.
    Lee SC; Cruikshank SJ; Connors BW
    J Physiol; 2010 Jul; 588(Pt 13):2403-15. PubMed ID: 20457735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.