These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30802241)

  • 1. An alkaline active feruloyl-CoA synthetase from soil metagenome as a potential key enzyme for lignin valorization strategies.
    Sodré V; Araujo JN; Gonçalves TA; Vilela N; Braz ASK; Franco TT; de Oliveira Neto M; Damasio ARL; Garcia W; Squina FM
    PLoS One; 2019; 14(2):e0212629. PubMed ID: 30802241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant expression, purification and characterization of an active bacterial feruloyl-CoA synthase with potential for application in vanillin production.
    Dos Santos OAL; Gonçalves TA; Sodré V; Vilela N; Tomazetto G; Squina FM; Garcia W
    Protein Expr Purif; 2022 Sep; 197():106109. PubMed ID: 35533785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of a prokaryotic feruloyl-CoA hydratase-lyase from a lignin-degrading consortium with high oligomerization stability under extreme pHs.
    Liberato MV; Araújo JN; Sodré V; Gonçalves TA; Vilela N; Moraes EC; Garcia W; Squina FM
    Biochim Biophys Acta Proteins Proteom; 2020 Mar; 1868(3):140344. PubMed ID: 31841665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying biochemical and structural characterization of hydroxycinnamate catabolic enzymes from soil metagenome for lignin valorization strategies.
    Gonçalves TA; Sodré V; da Silva SN; Vilela N; Tomazetto G; Araujo JN; Muniz JRC; Fill TP; Damasio A; Garcia W; Squina FM
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2503-2516. PubMed ID: 35352150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.
    Yang W; Tang H; Ni J; Wu Q; Hua D; Tao F; Xu P
    PLoS One; 2013; 8(6):e67339. PubMed ID: 23840666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin.
    Achterholt S; Priefert H; Steinbüchel A
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):799-807. PubMed ID: 11152072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and properties of acetyl-CoA synthetase (ADP-forming), an archaeal enzyme of acetate formation and ATP synthesis, from the hyperthermophile Pyrococcus furiosus.
    Glasemacher J; Bock AK; Schmid R; Schønheit P
    Eur J Biochem; 1997 Mar; 244(2):561-7. PubMed ID: 9119024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization.
    Moraes EC; Alvarez TM; Persinoti GF; Tomazetto G; Brenelli LB; Paixão DAA; Ematsu GC; Aricetti JA; Caldana C; Dixon N; Bugg TDH; Squina FM
    Biotechnol Biofuels; 2018; 11():75. PubMed ID: 29588660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans.
    Plaggenborg R; Steinbüchel A; Priefert H
    FEMS Microbiol Lett; 2001 Nov; 205(1):9-16. PubMed ID: 11728709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation.
    Costa MA; Bedgar DL; Moinuddin SG; Kim KW; Cardenas CL; Cochrane FC; Shockey JM; Helms GL; Amakura Y; Takahashi H; Milhollan JK; Davin LB; Browse J; Lewis NG
    Phytochemistry; 2005 Sep; 66(17):2072-91. PubMed ID: 16099486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus.
    Mai X; Adams MW
    J Bacteriol; 1996 Oct; 178(20):5897-903. PubMed ID: 8830684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Redundancy in the Hydroxycinnamate Catabolism Pathways of the Salt Marsh Bacterium Sagittula stellata E-37.
    Frank AM; Chua MJ; Gulvik CA; Buchan A
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30242006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization.
    Varman AM; He L; Follenfant R; Wu W; Wemmer S; Wrobel SA; Tang YJ; Singh S
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):E5802-E5811. PubMed ID: 27634497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology.
    Kaur B; Chakraborty D; Kumar B
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8539-51. PubMed ID: 25077778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens.
    Narbad A; Gasson MJ
    Microbiology (Reading); 1998 May; 144 ( Pt 5)():1397-1405. PubMed ID: 9611814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome.
    Schröder C; Elleuche S; Blank S; Antranikian G
    Enzyme Microb Technol; 2014 Apr; 57():48-54. PubMed ID: 24629267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing efficient vanillin biosynthesis system by regulating feruloyl-CoA synthetase and enoyl-CoA hydratase enzymes.
    Chen QH; Xie DT; Qiang S; Hu CY; Meng YH
    Appl Microbiol Biotechnol; 2022 Jan; 106(1):247-259. PubMed ID: 34893929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM.
    Chakraborty D; Gupta G; Kaur B
    Protein Expr Purif; 2016 Dec; 128():123-33. PubMed ID: 27591788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA.
    Graf N; Wenzel M; Altenbuchner J
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3511-21. PubMed ID: 26658822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol.
    Plaggenborg R; Overhage J; Loos A; Archer JA; Lessard P; Sinskey AJ; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):745-55. PubMed ID: 16421716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.