These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30802428)

  • 41. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase.
    Costa SR; Marek M; Axelsen KB; Theorin L; Pomorski TG; López-Marqués RL
    Biochem J; 2016 Jun; 473(11):1605-15. PubMed ID: 27048590
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulatory Roles of N- and C-Terminal Cytoplasmic Regions of P4-ATPases.
    Shin HW; Takatsu H
    Chem Pharm Bull (Tokyo); 2022; 70(8):524-532. PubMed ID: 35908917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lipid flippases as key players in plant adaptation to their environment.
    López-Marqués RL
    Nat Plants; 2021 Sep; 7(9):1188-1199. PubMed ID: 34531559
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disease mutations reveal residues critical to the interaction of P4-ATPases with lipid substrates.
    Gantzel RH; Mogensen LS; Mikkelsen SA; Vilsen B; Molday RS; Vestergaard AL; Andersen JP
    Sci Rep; 2017 Sep; 7(1):10418. PubMed ID: 28874751
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Yeast P4-ATPases Drs2p and Dnf1p are essential cargos of the NPFXD/Sla1p endocytic pathway.
    Liu K; Hua Z; Nepute JA; Graham TR
    Mol Biol Cell; 2007 Feb; 18(2):487-500. PubMed ID: 17122361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular cloning of a P-type ATPase gene from the cyanobacterium Synechocystis sp. PCC 6803. Homology to eukaryotic Ca(2+)-ATPases.
    Geisler M; Richter J; Schumann J
    J Mol Biol; 1993 Dec; 234(4):1284-9. PubMed ID: 8263933
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolution of proteasomal ATPases.
    Wollenberg K; Swaffield JC
    Mol Biol Evol; 2001 Jun; 18(6):962-74. PubMed ID: 11371584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The AAA team: related ATPases with diverse functions.
    Patel S; Latterich M
    Trends Cell Biol; 1998 Feb; 8(2):65-71. PubMed ID: 9695811
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The lipid head group is the key element for substrate recognition by the P4 ATPase ALA2: a phosphatidylserine flippase.
    Theorin L; Faxén K; Sørensen DM; Migotti R; Dittmar G; Schiller J; Daleke DL; Palmgren M; López-Marqués RL; Günther Pomorski T
    Biochem J; 2019 Mar; 476(5):783-794. PubMed ID: 30755463
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Primary structure and evolution of the ATP-binding domains of the P-type ATPases in Tetrahymena thermophila.
    Wang S; Takeyasu K
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C715-28. PubMed ID: 9124316
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conformational changes of a phosphatidylcholine flippase in lipid membranes.
    Xu J; He Y; Wu X; Li L
    Cell Rep; 2022 Mar; 38(11):110518. PubMed ID: 35294892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular evolution of H+-ATPases. I. Methanococcus and Sulfolobus are monophyletic with respect to eukaryotes and Eubacteria.
    Gogarten JP; Rausch T; Bernasconi P; Kibak H; Taiz L
    Z Naturforsch C J Biosci; 1989; 44(7-8):641-50. PubMed ID: 2528356
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evolution of structure and function of V-ATPases.
    Kibak H; Taiz L; Starke T; Bernasconi P; Gogarten JP
    J Bioenerg Biomembr; 1992 Aug; 24(4):415-24. PubMed ID: 1400286
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the origin of lipid asymmetry: the flip side of ion transport.
    Lenoir G; Williamson P; Holthuis JC
    Curr Opin Chem Biol; 2007 Dec; 11(6):654-61. PubMed ID: 17981493
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inventory of the superfamily of P-type ion pumps in Arabidopsis.
    Axelsen KB; Palmgren MG
    Plant Physiol; 2001 Jun; 126(2):696-706. PubMed ID: 11402198
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catch You on the Flip Side: A Critical Review of Flippase Mutant Phenotypes.
    Nintemann SJ; Palmgren M; López-Marqués RL
    Trends Plant Sci; 2019 May; 24(5):468-478. PubMed ID: 30885637
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery.
    Bryde S; Hennrich H; Verhulst PM; Devaux PF; Lenoir G; Holthuis JC
    J Biol Chem; 2010 Dec; 285(52):40562-72. PubMed ID: 20961850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flipping and flopping--lipids on the move.
    Sharom FJ
    IUBMB Life; 2011 Sep; 63(9):736-46. PubMed ID: 21793163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.