These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30802550)

  • 1. Development of a PAT tool for monitoring the Wurster coater performance.
    Foroughi-Dahr M; Sotudeh-Gharebagh R; Mostoufi N
    Int J Pharm; 2019 Apr; 561():171-186. PubMed ID: 30802550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of the uniformity of coating thickness of pellets coated with a conventional Wurster chamber and a swirl generator-equipped Wurster chamber.
    Luštrik M; Dreu R; Šibanc R; Srčič S
    Pharm Dev Technol; 2012; 17(3):268-76. PubMed ID: 21073402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process.
    Lee MJ; Seo DY; Lee HE; Wang IC; Kim WS; Jeong MY; Choi GJ
    Int J Pharm; 2011 Jan; 403(1-2):66-72. PubMed ID: 21035529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Process Analytical Technology (PAT) for in-line monitoring of film thickness and mass of coating materials during a pan coating operation.
    Gendre C; Genty M; Boiret M; Julien M; Meunier L; Lecoq O; Baron M; Chaminade P; Péan JM
    Eur J Pharm Sci; 2011 Jul; 43(4):244-50. PubMed ID: 21569842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PAT-Based Control of Fluid Bed Coating Process Using NIR Spectroscopy to Monitor the Cellulose Coating on Pharmaceutical Pellets.
    Naidu VR; Deshpande RS; Syed MR; Deoghare P; Singh D; Wakte PS
    AAPS PharmSciTech; 2017 Aug; 18(6):2045-2054. PubMed ID: 27995464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-line monitoring of pellet coating thickness growth by means of visual imaging.
    Oman Kadunc N; Sibanc R; Dreu R; Likar B; Tomaževič D
    Int J Pharm; 2014 Aug; 470(1-2):8-14. PubMed ID: 24792980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic calibration for the in-line NIR monitoring of film thickness of pharmaceutical tablets processed in a fluid-bed coater.
    Lee MJ; Park CR; Kim AY; Kwon BS; Bang KH; Cho YS; Jeong MY; Choi GJ
    J Pharm Sci; 2010 Jan; 99(1):325-35. PubMed ID: 19455613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.
    Möltgen CV; Puchert T; Menezes JC; Lochmann D; Reich G
    Talanta; 2012 Apr; 92():26-37. PubMed ID: 22385804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feasibility study on pellet coating using a high-speed quasi-continuous coater.
    Cahyadi C; Koh JJ; Loh ZH; Chan LW; Heng PW
    AAPS PharmSciTech; 2012 Dec; 13(4):1276-86. PubMed ID: 22996671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid-bed coater modifications and study of their influence on the coating process of pellets.
    Dreu R; Luštrik M; Perpar M; Zun I; Srčič S
    Drug Dev Ind Pharm; 2012 Apr; 38(4):501-11. PubMed ID: 21962028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applicability of near-infrared spectroscopy in the monitoring of film coating and curing process of the prolonged release coated pellets.
    Korasa K; Hudovornik G; Vrečer F
    Eur J Pharm Sci; 2016 Oct; 93():484-92. PubMed ID: 27562707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring.
    Möltgen CV; Herdling T; Reich G
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1056-63. PubMed ID: 24056056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Mini to Micro Scale-Feasibility of Raman Spectroscopy as a Process Analytical Tool (PAT).
    Wirges M; Müller J; Kása P; Regdon G; Pintye-Hódi K; Knop K; Kleinebudde P
    Pharmaceutics; 2011 Oct; 3(4):723-30. PubMed ID: 24309305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments.
    Kim B; Woo YA
    J Pharm Biomed Anal; 2018 May; 154():278-284. PubMed ID: 29567570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an automation system for a tablet coater.
    Ruotsalainen M; Heinämäki J; Rantanen J; Yliruusi J
    AAPS PharmSciTech; 2002; 3(2):E14. PubMed ID: 12916951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging.
    Haaser M; Naelapää K; Gordon KC; Pepper M; Rantanen J; Strachan CJ; Taday PF; Zeitler JA; Rades T
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1095-102. PubMed ID: 23563103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Raman spectroscopy as PAT tool in active coating.
    Müller J; Knop K; Thies J; Uerpmann C; Kleinebudde P
    Drug Dev Ind Pharm; 2010 Feb; 36(2):234-43. PubMed ID: 19778159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of pellet coating uniformity using a computer scanner.
    Šibanc R; Luštrik M; Dreu R
    Int J Pharm; 2017 Nov; 533(2):377-382. PubMed ID: 28606507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFD-DEM -DDM Model for Spray Coating Process in a Wurster Coater.
    Farivar F; Zhang H; Tian ZF; Gupte A
    J Pharm Sci; 2020 Dec; 109(12):3678-3689. PubMed ID: 33007276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time imaging as an emerging process analytical technology tool for monitoring of fluid bed coating process.
    Naidu VR; Deshpande RS; Syed MR; Wakte PS
    Pharm Dev Technol; 2018 Jul; 23(6):596-601. PubMed ID: 28121263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.