These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

697 related articles for article (PubMed ID: 30802639)

  • 1. Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability.
    Fu Z; Liu F; Liu C; Jin B; Jiang Y; Tang M; Qi X; Guo X
    Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1428-1435. PubMed ID: 30802639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ABCB10 depletion reduces unfolded protein response in mitochondria.
    Yano M
    Biochem Biophys Res Commun; 2017 Apr; 486(2):465-469. PubMed ID: 28315685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VCP cooperates with UBXD1 to degrade mitochondrial outer membrane protein MCL1 in model of Huntington's disease.
    Guo X; Qi X
    Biochim Biophys Acta Mol Basis Dis; 2017 Feb; 1863(2):552-559. PubMed ID: 27913212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin.
    Damiano M; Diguet E; Malgorn C; D'Aurelio M; Galvan L; Petit F; Benhaim L; Guillermier M; Houitte D; Dufour N; Hantraye P; Canals JM; Alberch J; Delzescaux T; Déglon N; Beal MF; Brouillet E
    Hum Mol Genet; 2013 Oct; 22(19):3869-82. PubMed ID: 23720495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length.
    Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P
    J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Juvenile Huntington's Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mutant Huntingtin Protein.
    Aladdin A; Király R; Boto P; Regdon Z; Tar K
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31717806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington's disease.
    Haun F; Nakamura T; Shiu AD; Cho DH; Tsunemi T; Holland EA; La Spada AR; Lipton SA
    Antioxid Redox Signal; 2013 Oct; 19(11):1173-84. PubMed ID: 23641925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy.
    Vidal RL; Figueroa A; Court FA; Thielen P; Molina C; Wirth C; Caballero B; Kiffin R; Segura-Aguilar J; Cuervo AM; Glimcher LH; Hetz C
    Hum Mol Genet; 2012 May; 21(10):2245-62. PubMed ID: 22337954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington's disease.
    Guo X; Sun X; Hu D; Wang YJ; Fujioka H; Vyas R; Chakrapani S; Joshi AU; Luo Y; Mochly-Rosen D; Qi X
    Nat Commun; 2016 Aug; 7():12646. PubMed ID: 27561680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UPR
    Hu D; Liu Z; Qi X
    Biochem Biophys Res Commun; 2021 Sep; 569():17-22. PubMed ID: 34216993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease.
    Yin X; Manczak M; Reddy PH
    Hum Mol Genet; 2016 May; 25(9):1739-53. PubMed ID: 26908605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum.
    Oliveira JM
    J Neurochem; 2010 Jul; 114(1):1-12. PubMed ID: 20403078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosome Profiling and Mass Spectrometry Reveal Widespread Mitochondrial Translation Defects in a Striatal Cell Model of Huntington Disease.
    Dagar S; Sharma M; Tsaprailis G; Tapia CS; Crynen G; Joshi PS; Shahani N; Subramaniam S
    Mol Cell Proteomics; 2024 Apr; 23(4):100746. PubMed ID: 38447791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington's disease.
    Ju TC; Chen HM; Chen YC; Chang CP; Chang C; Chern Y
    Biochim Biophys Acta; 2014 Sep; 1842(9):1668-80. PubMed ID: 24946181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease.
    Caron NS; Southwell AL; Brouwers CC; Cengio LD; Xie Y; Black HF; Anderson LM; Ko S; Zhu X; van Deventer SJ; Evers MM; Konstantinova P; Hayden MR
    Nucleic Acids Res; 2020 Jan; 48(1):36-54. PubMed ID: 31745548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced Expression of Foxp1 as a Contributing Factor in Huntington's Disease.
    Louis Sam Titus ASC; Yusuff T; Cassar M; Thomas E; Kretzschmar D; D'Mello SR
    J Neurosci; 2017 Jul; 37(27):6575-6587. PubMed ID: 28550168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced mitochondrial complex II activity enhances cell death via intracellular reactive oxygen species in STHdhQ111 striatal neurons with mutant huntingtin.
    Okada N; Yako T; Nakamura S; Shimazawa M; Hara H
    J Pharmacol Sci; 2021 Dec; 147(4):367-375. PubMed ID: 34663519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress response mechanisms in protein misfolding diseases: Profiling a cellular model of Huntington's disease.
    Almeida LM; Oliveira Â; Oliveira JMA; Pinho BR
    Arch Biochem Biophys; 2023 Sep; 745():109711. PubMed ID: 37541563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
    Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM
    Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage.
    Shirendeb U; Reddy AP; Manczak M; Calkins MJ; Mao P; Tagle DA; Reddy PH
    Hum Mol Genet; 2011 Apr; 20(7):1438-55. PubMed ID: 21257639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.