These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30802673)

  • 21. Garlic (Allium sativum) based interplanting alters the heavy metals absorption and bacterial diversity in neighboring plants.
    Hussain J; Wei X; Xue-Gang L; Shah SRU; Aslam M; Ahmed I; Abdullah S; Babar A; Jakhar AM; Azam T
    Sci Rep; 2021 Mar; 11(1):5833. PubMed ID: 33712650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: sustainability and risks.
    Pérez-de-Mora A; Madejón P; Burgos P; Cabrera F; Lepp NW; Madejón E
    Environ Pollut; 2011 Oct; 159(10):3018-27. PubMed ID: 21561696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada.
    Courchesne F; Turmel MC; Cloutier-Hurteau B; Constantineau S; Munro L; Labrecque M
    Int J Phytoremediation; 2017 Jun; 19(6):545-554. PubMed ID: 27996300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-criteria decision analysis of optimal planting for enhancing phytoremediation of trace heavy metals in mining sites under interval residual contaminant concentrations.
    Lu J; Lu H; Li J; Liu J; Feng S; Guan Y
    Environ Pollut; 2019 Dec; 255(Pt 2):113255. PubMed ID: 31563784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential of selected Canadian plant species for phytoextraction of trace elements from selenium-rich soil contaminated by industrial activity.
    Nissim WG; Hasbroucq S; Kadri H; Pitre FE; Labrecque M
    Int J Phytoremediation; 2015; 17(8):745-52. PubMed ID: 26030362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.
    Cheraghi M; Lorestani B; Khorasani N; Yousefi N; Karami M
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1133-41. PubMed ID: 19319488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of phosphogypsum and NPK amendments on the retention or leaching of metals in different soils.
    Ammar R; Kanbar HJ; Kazpard V; Wazne M; El Samrani AG; Amacha N; Saad Z; Chou L
    J Environ Manage; 2016 Aug; 178():20-29. PubMed ID: 27131954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trace element accumulation potential in lemongrass varieties (Cymbopogon species) and prediction through regression model equations followed by path analysis: a field study.
    Pandey J; Verma RK; Singh S
    Chemosphere; 2020 Oct; 257():127102. PubMed ID: 32534292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of fertilizer industry emissions on local soil contamination: a case study of a phosphate plant on the east Mediterranean coast.
    Kassir LN; Lartiges B; Ouaini N
    Environ Technol; 2012; 33(7-9):873-85. PubMed ID: 22720412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants.
    Hentati O; Abrantes N; Caetano AL; Bouguerra S; Gonçalves F; Römbke J; Pereira R
    J Hazard Mater; 2015 Aug; 294():80-9. PubMed ID: 25855616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain.
    Enamorado S; Abril JM; Delgado A; Más JL; Polvillo O; Quintero JM
    J Hazard Mater; 2014 Feb; 266():122-31. PubMed ID: 24389006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry.
    Lütke SF; Oliveira MLS; Silva LFO; Cadaval TRS; Dotto GL
    Chemosphere; 2020 Oct; 256():127138. PubMed ID: 32450348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals.
    Gupta DK; Chatterjee S; Datta S; Veer V; Walther C
    Chemosphere; 2014 Aug; 108():134-44. PubMed ID: 24560283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The potential of an energy crop "Conocarpus erectus" for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils.
    Tauqeer HM; Ur-Rahman M; Hussain S; Abbas F; Iqbal M
    Ecotoxicol Environ Saf; 2019 May; 173():273-284. PubMed ID: 30776560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea.
    Usman AR; Lee SS; Awad YM; Lim KJ; Yang JE; Ok YS
    Chemosphere; 2012 May; 87(8):872-8. PubMed ID: 22342337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits.
    Madejón P; Ciadamidaro L; Marañón T; Murillo JM
    Int J Phytoremediation; 2013; 15(6):602-14. PubMed ID: 23819300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans.
    Alirzayeva E; Neumann G; Horst W; Allahverdiyeva Y; Specht A; Alizade V
    Environ Pollut; 2017 Jan; 220(Pt B):1024-1035. PubMed ID: 27890587
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of native plants for their potential to remove trace metals around Legadembi tailings dam, Southern Ethiopia.
    Mengistu GT; Sahilu G; Mulat W; Amare E
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55615-55624. PubMed ID: 36897449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.