These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30802763)

  • 41. Fabrication of pixelated liquid crystal nanostructures employing the contact line instabilities of droplets.
    Ravi B; Bhattacharjee M; Ghosh A; Bandyopadhyay D
    Nanoscale; 2019 Jan; 11(4):1680-1691. PubMed ID: 30620017
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective droplet coalescence using microfluidic systems.
    Mazutis L; Griffiths AD
    Lab Chip; 2012 Apr; 12(10):1800-6. PubMed ID: 22453914
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface-dependent scenarios for dissolution-driven motion of growing droplets.
    Curiotto S; Leroy F; Cheynis F; Müller P
    Sci Rep; 2017 Apr; 7(1):902. PubMed ID: 28424529
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A single-molecule enzymatic assay in a directly accessible femtoliter droplet array.
    Sakakihara S; Araki S; Iino R; Noji H
    Lab Chip; 2010 Dec; 10(24):3355-62. PubMed ID: 21031171
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
    Aili A; Li H; Alhosani MH; Zhang T
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acoustofluidic generation of droplets with tunable chemical concentrations.
    Park J; Destgeer G; Afzal M; Sung HJ
    Lab Chip; 2020 Oct; 20(21):3922-3929. PubMed ID: 33026382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Speeding up biphasic reactions with surface nanodroplets.
    Li Z; Kiyama A; Zeng H; Lohse D; Zhang X
    Lab Chip; 2020 Aug; 20(16):2965-2974. PubMed ID: 32780079
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pattern-Directed Ordering of Spin-Dewetted Liquid Crystal Micro- or Nanodroplets as Pixelated Light Reflectors and Locomotives.
    Ravi B; Chakraborty S; Bhattacharjee M; Mitra S; Ghosh A; Gooh Pattader PS; Bandyopadhyay D
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):1066-1076. PubMed ID: 28026170
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Morphological Transformation of Surface Femtodroplets upon Dissolution.
    Peng S; Pinchasik BE; Hao H; Möhwald H; Zhang X
    J Phys Chem Lett; 2017 Feb; 8(3):584-590. PubMed ID: 28080055
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polymorph farming of acetaminophen and sulfathiazole on a chip.
    Lee T; Hung ST; Kuo CS
    Pharm Res; 2006 Nov; 23(11):2542-55. PubMed ID: 16969701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of Chemical and Geometric Microstructures on the Crystallization of Surface Droplets during Solvent Exchange.
    Choi H; Wei Z; You JB; Yang H; Zhang X
    Langmuir; 2021 May; 37(17):5290-5298. PubMed ID: 33891427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets.
    Soltani S; Oh MI; Consta S
    J Chem Phys; 2015 Mar; 142(11):114307. PubMed ID: 25796249
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Arrested coalescence of viscoelastic droplets: triplet shape and restructuring.
    Dahiya P; DeBenedictis A; Atherton TJ; Caggioni M; Prescott SW; Hartel RW; Spicer PT
    Soft Matter; 2017 Apr; 13(14):2686-2697. PubMed ID: 28332667
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-limiting cyclic growth of gallium droplets on Si(111).
    Kolíbal M; Cechal T; Brandejsová E; Cechal J; Sikola T
    Nanotechnology; 2008 Nov; 19(47):475606. PubMed ID: 21836281
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks.
    Xu L; Lee H; Panchapakesan R; Oh KW
    Lab Chip; 2012 Oct; 12(20):3936-42. PubMed ID: 22814673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Marangoni Convection in Evaporating Organic Liquid Droplets on a Nonwetting Substrate.
    Chandramohan A; Dash S; Weibel JA; Chen X; Garimella SV
    Langmuir; 2016 May; 32(19):4729-35. PubMed ID: 27119436
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces.
    Dash S; Chandramohan A; Weibel JA; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062407. PubMed ID: 25615112
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unidirectional Self-Driving Liquid Droplet Transport on a Monolayer Graphene-Covered Textured Substrate.
    Zhang Z; Guo X; Tang H; Ding J; Zheng YG; Li S
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28562-28570. PubMed ID: 31304739
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction.
    Zhou Y; Powers AS; Zhang X; Xu T; Bustillo K; Sun L; Zheng H
    Nanoscale; 2017 Sep; 9(37):13915-13921. PubMed ID: 28902192
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Printing with Satellite Droplets.
    Zhang Y; Li D; Liu Y; Wittstock G
    Small; 2018 Sep; 14(39):e1802583. PubMed ID: 30176113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.