These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

749 related articles for article (PubMed ID: 30803208)

  • 1. A Novel Hybrid Feature Extraction Model for Classification on Pulmonary Nodules.
    Kailasam SP; Sathik MM
    Asian Pac J Cancer Prev; 2019 Feb; 20(2):457-468. PubMed ID: 30803208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of benign and malignant lung nodules from CT images based on hybrid features.
    Zhang G; Yang Z; Gong L; Jiang S; Wang L
    Phys Med Biol; 2019 Jun; 64(12):125011. PubMed ID: 31141794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.
    Huang W; Xue Y; Wu Y
    PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning.
    Nishio M; Sugiyama O; Yakami M; Ueno S; Kubo T; Kuroda T; Togashi K
    PLoS One; 2018; 13(7):e0200721. PubMed ID: 30052644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class.
    Wang Z; Xin J; Sun P; Lin Z; Yao Y; Gao X
    Comput Methods Programs Biomed; 2018 Aug; 162():197-209. PubMed ID: 29903487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies.
    Nasrullah N; Sang J; Alam MS; Mateen M; Cai B; Hu H
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31466261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss.
    Tran GS; Nghiem TP; Nguyen VT; Luong CM; Burie JC
    J Healthc Eng; 2019; 2019():5156416. PubMed ID: 30863524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Scoring of Multiple Semantic Attributes With Multi-Task Feature Leverage: A Study on Pulmonary Nodules in CT Images.
    Sihong Chen ; Jing Qin ; Xing Ji ; Baiying Lei ; Tianfu Wang ; Dong Ni ; Jie-Zhi Cheng
    IEEE Trans Med Imaging; 2017 Mar; 36(3):802-814. PubMed ID: 28113928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bilinear convolutional neural network for lung nodules classification on CT images.
    Mastouri R; Khlifa N; Neji H; Hantous-Zannad S
    Int J Comput Assist Radiol Surg; 2021 Jan; 16(1):91-101. PubMed ID: 33140257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation.
    Wang H; Zhao T; Li LC; Pan H; Liu W; Gao H; Han F; Wang Y; Qi Y; Liang Z
    J Xray Sci Technol; 2018; 26(2):171-187. PubMed ID: 29036877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automatic detection of lung nodules in CT images using a hybrid feature set.
    Shaukat F; Raja G; Gooya A; Frangi AF
    Med Phys; 2017 Jul; 44(7):3615-3629. PubMed ID: 28409834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional data set.
    Sun T; Wang J; Li X; Lv P; Liu F; Luo Y; Gao Q; Zhu H; Guo X
    Comput Methods Programs Biomed; 2013 Aug; 111(2):519-24. PubMed ID: 23727300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine.
    Madero Orozco H; Vergara Villegas OO; Cruz Sánchez VG; Ochoa Domínguez Hde J; Nandayapa Alfaro Mde J
    Biomed Eng Online; 2015 Feb; 14():9. PubMed ID: 25888834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-Assisted Decision Support System in Pulmonary Cancer detection and stage classification on CT images.
    Masood A; Sheng B; Li P; Hou X; Wei X; Qin J; Feng D
    J Biomed Inform; 2018 Mar; 79():117-128. PubMed ID: 29366586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of pulmonary nodules based on a multiscale feature 3D U-Net convolutional neural network of transfer learning.
    Tang S; Yang M; Bai J
    PLoS One; 2020; 15(8):e0235672. PubMed ID: 32845877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images.
    Li W; Cao P; Zhao D; Wang J
    Comput Math Methods Med; 2016; 2016():6215085. PubMed ID: 28070212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network.
    Zhang C; Sun X; Dang K; Li K; Guo XW; Chang J; Yu ZQ; Huang FY; Wu YS; Liang Z; Liu ZY; Zhang XG; Gao XL; Huang SH; Qin J; Feng WN; Zhou T; Zhang YB; Fang WJ; Zhao MF; Yang XN; Zhou Q; Wu YL; Zhong WZ
    Oncologist; 2019 Sep; 24(9):1159-1165. PubMed ID: 30996009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved 3-D attention CNN with hybrid loss and feature fusion for pulmonary nodule classification.
    Huang YS; Wang TC; Huang SZ; Zhang J; Chen HM; Chang YC; Chang RF
    Comput Methods Programs Biomed; 2023 Feb; 229():107278. PubMed ID: 36463674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Hybrid Approach Based on Deep CNN Features to Detect Knee Osteoarthritis.
    Mahum R; Rehman SU; Meraj T; Rauf HT; Irtaza A; El-Sherbeeny AM; El-Meligy MA
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistage segmentation model and SVM-ensemble for precise lung nodule detection.
    Naqi SM; Sharif M; Yasmin M
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):1083-1095. PubMed ID: 29492880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.