BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 30803301)

  • 21. Minimum light intensity required to suppress nocturnal melatonin concentration in human saliva.
    Aoki H; Yamada N; Ozeki Y; Yamane H; Kato N
    Neurosci Lett; 1998 Aug; 252(2):91-4. PubMed ID: 9756329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-hour exposure to moderate illuminance (500 lux) shifts the human melatonin rhythm.
    Laakso ML; Hätönen T; Stenberg D; Alila A; Smith S
    J Pineal Res; 1993 Aug; 15(1):21-6. PubMed ID: 8229642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypersensitivity of melatonin suppression in response to light in patients with delayed sleep phase syndrome.
    Aoki H; Ozeki Y; Yamada N
    Chronobiol Int; 2001 Mar; 18(2):263-71. PubMed ID: 11379666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Less exposure to daily ambient light in winter increases sensitivity of melatonin to light suppression.
    Higuchi S; Motohashi Y; Ishibashi K; Maeda T
    Chronobiol Int; 2007; 24(1):31-43. PubMed ID: 17364578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-visual effects of diurnal exposure to an artificial skylight, including nocturnal melatonin suppression.
    Yasukouchi A; Maeda T; Hara K; Furuune H
    J Physiol Anthropol; 2019 Aug; 38(1):10. PubMed ID: 31462321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Annual variation in daily light exposure and circadian change of melatonin and cortisol concentrations at a northern latitude with large seasonal differences in photoperiod length.
    Adamsson M; Laike T; Morita T
    J Physiol Anthropol; 2016 Jul; 36(1):6. PubMed ID: 27435153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nasal versus temporal illumination of the human retina: effects on core body temperature, melatonin, and circadian phase.
    Rüger M; Gordijn MC; Beersma DG; de Vries B; Daan S
    J Biol Rhythms; 2005 Feb; 20(1):60-70. PubMed ID: 15654071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Melatonin rhythm observed throughout a three-cycle bright-light stimulus designed to reset the human circadian pacemaker.
    Shanahan TL; Kronauer RE; Duffy JF; Williams GH; Czeisler CA
    J Biol Rhythms; 1999 Jun; 14(3):237-53. PubMed ID: 10452336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of day-time exposure to different light intensities on light-induced melatonin suppression at night.
    Kozaki T; Kubokawa A; Taketomi R; Hatae K
    J Physiol Anthropol; 2015 Jul; 34(1):27. PubMed ID: 26141542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting human nocturnal nonvisual responses to monochromatic and polychromatic light with a melanopsin photosensitivity function.
    Revell VL; Barrett DC; Schlangen LJ; Skene DJ
    Chronobiol Int; 2010 Oct; 27(9-10):1762-77. PubMed ID: 20969522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of nocturnal bright light on saliva melatonin, core body temperature and sleep propensity rhythms in human subjects.
    Kubota T; Uchiyama M; Suzuki H; Shibui K; Kim K; Tan X; Tagaya H; Okawa M; Inoue S
    Neurosci Res; 2002 Feb; 42(2):115-22. PubMed ID: 11849730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-induced melatonin suppression in humans with polychromatic and monochromatic light.
    Revell VL; Skene DJ
    Chronobiol Int; 2007; 24(6):1125-37. PubMed ID: 18075803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bright light exposure during the daytime affects circadian rhythms of urinary melatonin and salivary immunoglobulin A.
    Park SJ; Tokura H
    Chronobiol Int; 1999 May; 16(3):359-71. PubMed ID: 10373104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase advancing human circadian rhythms with morning bright light, afternoon melatonin, and gradually shifted sleep: can we reduce morning bright-light duration?
    Crowley SJ; Eastman CI
    Sleep Med; 2015 Feb; 16(2):288-97. PubMed ID: 25620199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nocturnal Melatonin Profiles in Patients with Delayed Sleep-Wake Phase Disorder and Control Sleepers.
    Micic G; Lovato N; Gradisar M; Burgess HJ; Ferguson SA; Kennaway DJ; Lack L
    J Biol Rhythms; 2015 Oct; 30(5):437-48. PubMed ID: 26149168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applying Melanopic Lux to Measure Biological Light Effects on Melatonin Suppression and Subjective Sleepiness.
    Nowozin C; Wahnschaffe A; Rodenbeck A; de Zeeuw J; Hädel S; Kozakov R; Schöpp H; Münch M; Kunz D
    Curr Alzheimer Res; 2017; 14(10):1042-1052. PubMed ID: 28545361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predictions of melatonin suppression during the early biological night and their implications for residential light exposures prior to sleeping.
    Rea MS; Nagare R; Figueiro MG
    Sci Rep; 2020 Aug; 10(1):14114. PubMed ID: 32839489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review on age-related differences in non-visual effects of light: melatonin suppression, circadian phase shift and pupillary light reflex in children to older adults.
    Eto T; Higuchi S
    J Physiol Anthropol; 2023 Jun; 42(1):11. PubMed ID: 37355647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased Sensitivity of the Circadian System to Light in Early/Mid-Puberty.
    Crowley SJ; Cain SW; Burns AC; Acebo C; Carskadon MA
    J Clin Endocrinol Metab; 2015 Nov; 100(11):4067-73. PubMed ID: 26301944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The human circadian pacemaker can see by the dawn's early light.
    Danilenko KV; Wirz-Justice A; Kräuchi K; Weber JM; Terman M
    J Biol Rhythms; 2000 Oct; 15(5):437-46. PubMed ID: 11039921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.