BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30803482)

  • 1. Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer.
    Trigos AS; Pearson RB; Papenfuss AT; Goode DL
    Elife; 2019 Feb; 8():. PubMed ID: 30803482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors.
    Trigos AS; Pearson RB; Papenfuss AT; Goode DL
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6406-6411. PubMed ID: 28484005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How the evolution of multicellularity set the stage for cancer.
    Trigos AS; Pearson RB; Papenfuss AT; Goode DL
    Br J Cancer; 2018 Jan; 118(2):145-152. PubMed ID: 29337961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of metazoan gene regulatory networks in cancer alters the balance of co-expression between genes of unicellular and multicellular origins.
    Trigos AS; Bongiovanni F; Zhang Y; Zethoven M; Tothill R; Pearson R; Papenfuss AT; Goode DL
    Genome Biol; 2024 Apr; 25(1):110. PubMed ID: 38685127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data.
    de Matos Simoes R; Dalleau S; Williamson KE; Emmert-Streib F
    BMC Syst Biol; 2015 May; 9():21. PubMed ID: 25971253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. aCLS cancers: Genomic and epigenetic changes transform the cell of origin of cancer into a tumorigenic pathogen of unicellular organization and lifestyle.
    Niculescu VF
    Gene; 2020 Feb; 726():144174. PubMed ID: 31647999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of multicellularity and cancer: views and paradigms.
    Nedelcu AM
    Biochem Soc Trans; 2020 Aug; 48(4):1505-1518. PubMed ID: 32677677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origins of developmental gene regulation.
    Arenas-Mena C
    Evol Dev; 2017 Mar; 19(2):96-107. PubMed ID: 28116828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional Regulation in Archaea: From Individual Genes to Global Regulatory Networks.
    Martinez-Pastor M; Tonner PD; Darnell CL; Schmid AK
    Annu Rev Genet; 2017 Nov; 51():143-170. PubMed ID: 29178818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global transcription network incorporating distal regulator binding reveals selective cooperation of cancer drivers and risk genes.
    Kim K; Yang W; Lee KS; Bang H; Jang K; Kim SC; Yang JO; Park S; Park K; Choi JK
    Nucleic Acids Res; 2015 Jul; 43(12):5716-29. PubMed ID: 26001967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicellularity makes somatic differentiation evolutionarily stable.
    Wahl ME; Murray AW
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8362-7. PubMed ID: 27402737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 'cancell' theory of carcinogenesis: re-evolution of an ancient, holistic neoplastic unicellular concept of cancer.
    Grossgebauer K
    Med Hypotheses; 1995 Dec; 45(6):545-55. PubMed ID: 8771049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Nature of cancer explored from the perspective of the functional evolution of proto-oncogenes].
    Watari A
    Yakugaku Zasshi; 2012; 132(10):1165-70. PubMed ID: 23037702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer.
    Silva GO; He X; Parker JS; Gatza ML; Carey LA; Hou JP; Moulder SL; Marcom PK; Ma J; Rosen JM; Perou CM
    Breast Cancer Res Treat; 2015 Jul; 152(2):347-56. PubMed ID: 26109346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental advances in the characterization of metazoan gene regulatory networks.
    Deplancke B
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):12-27. PubMed ID: 19324929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of carcinogenesis: the role of oncogenes, transcriptional enhancers and growth factors.
    Spandidos DA
    Anticancer Res; 1985; 5(5):485-98. PubMed ID: 3904595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell differentiation: What have we learned in 50 years?
    Newman SA
    J Theor Biol; 2020 Jan; 485():110031. PubMed ID: 31568790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.