These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30803585)

  • 1. The status of waste management and waste to energy for district heating in South Korea.
    Thanos Bourtsalas AC; Seo Y; Tanvir Alam M; Seo YC
    Waste Manag; 2019 Feb; 85():304-316. PubMed ID: 30803585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.
    Lombardi L; Carnevale EA
    Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.
    Lausselet C; Cherubini F; Del Alamo Serrano G; Becidan M; Strømman AH
    Waste Manag; 2016 Dec; 58():191-201. PubMed ID: 27679967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining national greenhouse gas emissions from waste-to-energy using the Balance Method.
    Schwarzböck T; Rechberger H; Cencic O; Fellner J
    Waste Manag; 2016 Mar; 49():263-271. PubMed ID: 26847720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compliance with the EU waste hierarchy: A matter of stringency, enforcement, and time.
    Egüez A
    J Environ Manage; 2021 Feb; 280():111672. PubMed ID: 33309110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.
    Consonni S; Giugliano M; Grosso M
    Waste Manag; 2005; 25(2):123-35. PubMed ID: 15737710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.
    Tabata T; Tsai P
    Waste Manag Res; 2016 Feb; 34(2):148-55. PubMed ID: 26628053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver).
    Abedini AR; Atwater JW; Fu GY
    Waste Manag Res; 2012 Aug; 30(8):839-48. PubMed ID: 22700857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical method to calculate the R1 index of waste-to-energy facilities.
    Viganò F
    Waste Manag; 2018 Mar; 73():287-300. PubMed ID: 29100924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.
    Panepinto D; Genon G
    Waste Manag Res; 2014 Jul; 32(7):670-80. PubMed ID: 24942837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy recovery potential from incineration using municipal solid waste based on multi-scenario analysis in Beijing.
    Gu W; Liu D; Wang C
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):27119-27131. PubMed ID: 33506413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy recovery from waste incineration: assessing the importance of district heating networks.
    Fruergaard T; Christensen TH; Astrup T
    Waste Manag; 2010 Jul; 30(7):1264-72. PubMed ID: 20385481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material and energy recovery in integrated waste management systems: the potential for energy recovery.
    Consonni S; Viganò F
    Waste Manag; 2011; 31(9-10):2074-84. PubMed ID: 21689919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on technological options of waste to energy for effective management of municipal solid waste.
    Kumar A; Samadder SR
    Waste Manag; 2017 Nov; 69():407-422. PubMed ID: 28886975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition of different methods for recovering energy from waste.
    Friege H; Fendel A
    Waste Manag Res; 2011 Oct; 29(10 Suppl):30-8. PubMed ID: 21824986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China.
    Cheng H; Hu Y
    Bioresour Technol; 2010 Jun; 101(11):3816-24. PubMed ID: 20137912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration.
    Panepinto D; Zanetti MC
    Waste Manag; 2018 Mar; 73():332-341. PubMed ID: 28774585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is it better to burn or bury waste for clean electricity generation?
    Kaplan PO; Decarolis J; Thorneloe S
    Environ Sci Technol; 2009 Mar; 43(6):1711-7. PubMed ID: 19368161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.