These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 30803588)
1. From polystyrene waste to porous carbon flake and potential application in supercapacitor. Min J; Zhang S; Li J; Klingeler R; Wen X; Chen X; Zhao X; Tang T; Mijowska E Waste Manag; 2019 Feb; 85():333-340. PubMed ID: 30803588 [TBL] [Abstract][Full Text] [Related]
2. Transforming polystyrene waste into 3D hierarchically porous carbon for high-performance supercapacitors. Ma C; Min J; Gong J; Liu X; Mu X; Chen X; Tang T Chemosphere; 2020 Aug; 253():126755. PubMed ID: 32464775 [TBL] [Abstract][Full Text] [Related]
3. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density. Zhang Y; Tang Z Waste Manag; 2020 Apr; 106():250-260. PubMed ID: 32240941 [TBL] [Abstract][Full Text] [Related]
4. MnO Youe WJ; Kim SJ; Lee SM; Chun SJ; Kang J; Kim YS Int J Biol Macromol; 2018 Jun; 112():943-950. PubMed ID: 29438754 [TBL] [Abstract][Full Text] [Related]
5. Sustainable recycling of waste polystyrene into hierarchical porous carbon nanosheets with potential applications in supercapacitors. Ma C; Liu X; Min J; Li J; Gong J; Wen X; Chen X; Tang T; Mijowska E Nanotechnology; 2020 Jan; 31(3):035402. PubMed ID: 31550696 [TBL] [Abstract][Full Text] [Related]
6. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Qu WH; Xu YY; Lu AH; Zhang XQ; Li WC Bioresour Technol; 2015 Aug; 189():285-291. PubMed ID: 25898091 [TBL] [Abstract][Full Text] [Related]
7. Controllable Carbonization of Plastic Waste into Three-Dimensional Porous Carbon Nanosheets by Combined Catalyst for High Performance Capacitor. Mu X; Li Y; Liu X; Ma C; Jiang H; Zhu J; Chen X; Tang T; Mijowska E Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32498232 [TBL] [Abstract][Full Text] [Related]
8. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors. Chou TC; Doong RA; Hu CC; Zhang B; Su DS ChemSusChem; 2014 Mar; 7(3):841-7. PubMed ID: 24504702 [TBL] [Abstract][Full Text] [Related]
9. Manganese Dioxide Supported on Porous Biomorphic Carbons as Hybrid Materials for Energy Storage Devices. Gutierrez-Pardo A; Lacroix B; Martinez-Fernandez J; Ramirez-Rico J ACS Appl Mater Interfaces; 2016 Nov; 8(45):30890-30898. PubMed ID: 27791352 [TBL] [Abstract][Full Text] [Related]
10. Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life. Boota M; Paranthaman MP; Naskar AK; Li Y; Akato K; Gogotsi Y ChemSusChem; 2015 Nov; 8(21):3576-81. PubMed ID: 26404735 [TBL] [Abstract][Full Text] [Related]
12. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance. Song M; Zhou Y; Ren X; Wan J; Du Y; Wu G; Ma F J Colloid Interface Sci; 2019 Feb; 535():276-286. PubMed ID: 30316114 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical porous carbon/MnO2 hybrids as supercapacitor electrodes. Lee ME; Yun YS; Jin HJ J Nanosci Nanotechnol; 2014 Dec; 14(12):9178-81. PubMed ID: 25971033 [TBL] [Abstract][Full Text] [Related]
14. Mass production of hierarchically porous carbon nanosheets by carbonizing "real-world" mixed waste plastics toward excellent-performance supercapacitors. Wen Y; Kierzek K; Chen X; Gong J; Liu J; Niu R; Mijowska E; Tang T Waste Manag; 2019 Mar; 87():691-700. PubMed ID: 31109571 [TBL] [Abstract][Full Text] [Related]
15. Natural bio-waste-derived 3D N/O self-doped heteroatom honeycomb-like porous carbon with tuned huge surface area for high-performance supercapacitor. Prabu S; Chiang KY Chemosphere; 2024 Aug; 361():142400. PubMed ID: 38789052 [TBL] [Abstract][Full Text] [Related]
16. Urine to highly porous heteroatom-doped carbons for supercapacitor: A value added journey for human waste. Razmjooei F; Singh K; Kang TH; Chaudhari N; Yuan J; Yu JS Sci Rep; 2017 Sep; 7(1):10910. PubMed ID: 28883659 [TBL] [Abstract][Full Text] [Related]
17. MnO Li XS; Xu MM; Yang Y; Huang QB; Wang XY; Ren JL; Wang XH Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31357382 [TBL] [Abstract][Full Text] [Related]
18. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors. Du SH; Wang LQ; Fu XT; Chen MM; Wang CY Bioresour Technol; 2013 Jul; 139():406-9. PubMed ID: 23684820 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Ma G; Yang Q; Sun K; Peng H; Ran F; Zhao X; Lei Z Bioresour Technol; 2015 Dec; 197():137-42. PubMed ID: 26320018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]