BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30803782)

  • 1. Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis.
    Kawai K; Kanesaki Y; Yoshikawa H; Hirasawa T
    J Biosci Bioeng; 2019 Aug; 128(2):162-169. PubMed ID: 30803782
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Yuzawa T; Shirai T; Orishimo R; Kawai K; Kondo A; Hirasawa T
    J Gen Appl Microbiol; 2021 Oct; 67(4):142-149. PubMed ID: 33967166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of function of Hog1 improves glycerol assimilation in Saccharomyces cerevisiae.
    Sone M; Navanopparatsakul K; Takahashi S; Furusawa C; Hirasawa T
    World J Microbiol Biotechnol; 2023 Jul; 39(10):255. PubMed ID: 37474876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Saccharomyces cerevisiae for glycerol utilization.
    Yu Z; Chang Z; Lu Y; Xiao H
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36869777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Ho PW; Klein M; Futschik M; Nevoigt E
    FEMS Yeast Res; 2018 May; 18(3):. PubMed ID: 29481685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae.
    Espinosa MI; Gonzalez-Garcia RA; Valgepea K; Plan MR; Scott C; Pretorius IS; Marcellin E; Paulsen IT; Williams TC
    Nat Commun; 2020 Nov; 11(1):5564. PubMed ID: 33149159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae.
    Swinnen S; Ho PW; Klein M; Nevoigt E
    Metab Eng; 2016 Jul; 36():68-79. PubMed ID: 26971668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory evolution reveals regulatory and metabolic trade-offs of glycerol utilization in Saccharomyces cerevisiae.
    Strucko T; Zirngibl K; Pereira F; Kafkia E; Mohamed ET; Rettel M; Stein F; Feist AM; Jouhten P; Patil KR; Forster J
    Metab Eng; 2018 May; 47():73-82. PubMed ID: 29534903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling.
    Ito Y; Hirasawa T; Shimizu H
    Biosci Biotechnol Biochem; 2014; 78(1):151-9. PubMed ID: 25036498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering and transcriptome study of Saccharomyces cerevisiae to produce ginsenoside compound K by glycerol.
    Zhang C; Tian J; Zhang J; Liu R; Zhao X; Lu W
    Biotechnol J; 2024 Feb; 19(2):e2300383. PubMed ID: 38403397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Laboratory Evolution and Reverse Engineering of Single-Vitamin Prototrophies in Saccharomyces cerevisiae.
    Perli T; Moonen DPI; van den Broek M; Pronk JT; Daran JM
    Appl Environ Microbiol; 2020 Jun; 86(12):. PubMed ID: 32303542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.
    Otero JM; Cimini D; Patil KR; Poulsen SG; Olsson L; Nielsen J
    PLoS One; 2013; 8(1):e54144. PubMed ID: 23349810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations.
    Bracher JM; de Hulster E; Koster CC; van den Broek M; Daran JG; van Maris AJA; Pronk JT
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae.
    Jung JY; Yun HS; Lee J; Oh MK
    J Microbiol Biotechnol; 2011 Aug; 21(8):846-53. PubMed ID: 21876375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.
    Yu KO; Jung J; Ramzi AB; Kim SW; Park C; Han SO
    Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving carotenoids production in yeast via adaptive laboratory evolution.
    Reyes LH; Gomez JM; Kao KC
    Metab Eng; 2014 Jan; 21():26-33. PubMed ID: 24262517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.
    Baek SH; Kwon EY; Kim YH; Hahn JS
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.