These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30804186)

  • 1. Widespread global peatland establishment and persistence over the last 130,000 y.
    Treat CC; Kleinen T; Broothaerts N; Dalton AS; Dommain R; Douglas TA; Drexler JZ; Finkelstein SA; Grosse G; Hope G; Hutchings J; Jones MC; Kuhry P; Lacourse T; Lähteenoja O; Loisel J; Notebaert B; Payne RJ; Peteet DM; Sannel ABK; Stelling JM; Strauss J; Swindles GT; Talbot J; Tarnocai C; Verstraeten G; Williams CJ; Xia Z; Yu Z; Väliranta M; Hättestrand M; Alexanderson H; Brovkin V
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4822-4827. PubMed ID: 30804186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw.
    Hugelius G; Loisel J; Chadburn S; Jackson RB; Jones M; MacDonald G; Marushchak M; Olefeldt D; Packalen M; Siewert MB; Treat C; Turetsky M; Voigt C; Yu Z
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20438-20446. PubMed ID: 32778585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling past and future peatland carbon dynamics across the pan-Arctic.
    Chaudhary N; Westermann S; Lamba S; Shurpali N; Sannel ABK; Schurgers G; Miller PA; Smith B
    Glob Chang Biol; 2020 Jul; 26(7):4119-4133. PubMed ID: 32239563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tropical/Subtropical Peatland Development and Global CH4 during the Last Glaciation.
    Xu H; Lan J; Sheng E; Liu Y; Liu B; Yu K; Ye Y; Cheng P; Qiang X; Lu F; Wang X
    Sci Rep; 2016 Jul; 6():30431. PubMed ID: 27465566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive loss of past permafrost carbon but a net accumulation into present-day soils.
    Lindgren A; Hugelius G; Kuhry P
    Nature; 2018 Aug; 560(7717):219-222. PubMed ID: 30069043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecosystem state shifts during long-term development of an Amazonian peatland.
    Swindles GT; Morris PJ; Whitney B; Galloway JM; Gałka M; Gallego-Sala A; Macumber AL; Mullan D; Smith MW; Amesbury MJ; Roland TP; Sanei H; Patterson RT; Sanderson N; Parry L; Charman DJ; Lopez O; Valderamma E; Watson EJ; Ivanovic RF; Valdes PJ; Turner TE; Lähteenoja O
    Glob Chang Biol; 2018 Feb; 24(2):738-757. PubMed ID: 29055083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon accumulation of tropical peatlands over millennia: a modeling approach.
    Kurnianto S; Warren M; Talbot J; Kauffman B; Murdiyarso D; Frolking S
    Glob Chang Biol; 2015 Jan; 21(1):431-44. PubMed ID: 25044171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Siberian peatlands a net carbon sink and global methane source since the early Holocene.
    Smith LC; MacDonald GM; Velichko AA; Beilman DW; Borisova OK; Frey KE; Kremenetski KV; Sheng Y
    Science; 2004 Jan; 303(5656):353-6. PubMed ID: 14726587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.
    Cobb AR; Hoyt AM; Gandois L; Eri J; Dommain R; Abu Salim K; Kai FM; Haji Su'ut NS; Harvey CF
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5187-E5196. PubMed ID: 28607068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon burial and storage in tropical salt marshes under the influence of sea level rise.
    Ruiz-Fernández AC; Carnero-Bravo V; Sanchez-Cabeza JA; Pérez-Bernal LH; Amaya-Monterrosa OA; Bojórquez-Sánchez S; López-Mendoza PG; Cardoso-Mohedano JG; Dunbar RB; Mucciarone DA; Marmolejo-Rodríguez AJ
    Sci Total Environ; 2018 Jul; 630():1628-1640. PubMed ID: 29554779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in carbon and nitrogen concentrations among peatland categories at the global scale.
    Watmough S; Gilbert-Parkes S; Basiliko N; Lamit LJ; Lilleskov EA; Andersen R; Del Aguila-Pasquel J; Artz RE; Benscoter BW; Borken W; Bragazza L; Brandt SM; Bräuer SL; Carson MA; Chen X; Chimner RA; Clarkson BR; Cobb AR; Enriquez AS; Farmer J; Grover SP; Harvey CF; Harris LI; Hazard C; Hoyt AM; Hribljan J; Jauhiainen J; Juutinen S; Kane ES; Knorr KH; Kolka R; Könönen M; Laine AM; Larmola T; Levasseur PA; McCalley CK; McLaughlin J; Moore TR; Mykytczuk N; Normand AE; Rich V; Robinson B; Rupp DL; Rutherford J; Schadt CW; Smith DS; Spiers G; Tedersoo L; Thu PQ; Trettin CC; Tuittila ES; Turetsky M; Urbanová Z; Varner RK; Waldrop MP; Wang M; Wang Z; Warren M; Wiedermann MM; Williams ST; Yavitt JB; Yu ZG; Zahn G
    PLoS One; 2022; 17(11):e0275149. PubMed ID: 36417456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global peatland initiation driven by regionally asynchronous warming.
    Morris PJ; Swindles GT; Valdes PJ; Ivanovic RF; Gregoire LJ; Smith MW; Tarasov L; Haywood AM; Bacon KL
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4851-4856. PubMed ID: 29666256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.
    Kumaran NK; Padmalal D; Limaye RB; S VM; Jennerjahn T; Gamre PG
    PLoS One; 2016; 11(5):e0154297. PubMed ID: 27163658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular plants promote ancient peatland carbon loss with climate warming.
    Walker TN; Garnett MH; Ward SE; Oakley S; Bardgett RD; Ostle NJ
    Glob Chang Biol; 2016 May; 22(5):1880-9. PubMed ID: 26730448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations.
    Dommain R; Frolking S; Jeltsch-Thömmes A; Joos F; Couwenberg J; Glaser PH
    Glob Chang Biol; 2018 Nov; 24(11):5518-5533. PubMed ID: 30007100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age, extent and carbon storage of the central Congo Basin peatland complex.
    Dargie GC; Lewis SL; Lawson IT; Mitchard ET; Page SE; Bocko YE; Ifo SA
    Nature; 2017 Feb; 542(7639):86-90. PubMed ID: 28077869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate.
    Wang S; Zhuang Q; Lähteenoja O; Draper FC; Cadillo-Quiroz H
    Proc Natl Acad Sci U S A; 2018 Dec; 115(49):12407-12412. PubMed ID: 30455319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.
    Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S
    Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion.
    Warren M; Hergoualc'h K; Kauffman JB; Murdiyarso D; Kolka R
    Carbon Balance Manag; 2017 Dec; 12(1):12. PubMed ID: 28527145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tropical Peatland Hydrology Simulated With a Global Land Surface Model.
    Apers S; De Lannoy GJM; Baird AJ; Cobb AR; Dargie GC; Del Aguila Pasquel J; Gruber A; Hastie A; Hidayat H; Hirano T; Hoyt AM; Jovani-Sancho AJ; Katimon A; Kurnain A; Koster RD; Lampela M; Mahanama SPP; Melling L; Page SE; Reichle RH; Taufik M; Vanderborght J; Bechtold M
    J Adv Model Earth Syst; 2022 Mar; 14(3):e2021MS002784. PubMed ID: 35860446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.